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a b s t r a c t

Controlling and monitoring extreme downside market risk are important for financial risk management
and portfolio/investment diversification. In this paper, we introduce a new concept of Granger causality
in risk and propose a class of kernel-based tests to detect extreme downside risk spillover between
financial markets, where risk is measured by the left tail of the distribution or equivalently by the Value
at Risk (VaR). The proposed tests have a convenient asymptotic standard normal distribution under
the null hypothesis of no Granger causality in risk. They check a large number of lags and thus can
detect risk spillover that occurs with a time lag or that has weak spillover at each lag but carries over
a very long distributional lag. Usually, tests using a large number of lags may have low power against
alternatives of practical importance, due to the loss of a large number of degrees of freedom. Such power
loss is fortunately alleviated for our tests because our kernel approach naturally discounts higher order
lags, which is consistent with the stylized fact that today’s financial markets are often more influenced
by the recent events than the remote past events. A simulation study shows that the proposed tests
have reasonable size and power against a variety of empirically plausible alternatives in finite samples,
including the spillover from the dynamics in mean, variance, skewness and kurtosis respectively. In
particular, nonuniform weighting delivers better power than uniform weighting and a Granger-type
regression procedure. The proposed tests are useful in investigating large comovements between financial
markets such as financial contagions. An application to the Eurodollar and Japanese Yen highlights the
merits of our approach.

© 2009 Published by Elsevier B.V.
1. Introduction

Controlling andmonitoring financial risk have recently received
increasing attention from business practitioners, policy makers
and academic researchers. For financial risk management and
investment/portfolio diversification, it is important to understand
the mechanism of how risk spillover occurs across different
markets. When monitoring financial risk, the probability of a
large adverse market movement is always of greater concern
to practitioners (e.g., Bollerslev (2001)). When they occur,
extreme market movements imply change hands of a huge
amount of capital amongmarket participants, unavoidably leading
to bankruptcies due to various downside constraints. Market
participants have been always aware of painful experiences when
extreme adverse market movements occur, and their aversion to
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insolvency-type extreme risk is usually very high (e.g., Campbell
and Cochrance (1999)). Large market movements have become
commonplace nowadays. Examples include the 1994 Mexico Peso
Crisis, the 1994 US bond debacle, the 1997–1998 Asian financial
crisis, as well as the bankruptcies of the Long Term Capital
Management, Enron, and Worldcom.
Most of the existing literature uses volatility to measure risk

and focuses on volatility spillover (e.g., Cheung and Ng (1990,
1996)), Engle et al. (1990), Engle and Susmel (1993), Granger et al.
(1986), Hamao et al. (1990), King andWadhwani (1990), King et al.
(1994), Lin et al. (1994) andHong (2001)). Volatility is an important
instrument in finance and macroeconomics. However, it can only
adequately represent small risks in practice (e.g., Gourieroux
and Jasiak (2001, p. 427)). Volatility alone cannot satisfactorily
capture risk in scenarios of occasionally occurring extrememarket
movements. For example, Longin (2000) and Bali (2000) point out
that volatility measures based on asset return distributions cannot
produce accurate estimates of market risks during volatile periods.
Hong et al. (2004, 2007) also find that the innovation distributions
have heavier tails when the interest rate market and the foreign
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exchange market have higher volatilities. Moreover, volatility
includes both gains and losses in a symmetric way, whereas
financial risk is obviously associated with losses but not profits.
Also, practical downside constraints often require asymmetric
treatment between potential upside and downside risk. Therefore,
a more sensible measure of risk should be associated with large
losses, or large adverse market movements.
In econometrics and statistics, left tail probabilities are

closely related to the likelihoods of extreme downward market
movements (e.g., Embrechts et al. (1997)). Although not a perfect
measure of extreme market risk, Value at Risk (VaR), originally
proposed by J.P. Morgan in 1994, has become a standard synthetic
measure of extreme market risk (e.g., Duffie and Pan (1997) and
Engle and Manganelli (2004)). It measures how much a portfolio
can losewithin a given time period,with a prespecified probability.
It has become an essential part of financial regulations for setting
risk capital requirements so as to ensure that financial institutions
can survive after a catastrophic event (e.g., the Basel Committee
on Banking Supervision (1996); Basel Committee on Banking
Supervision (2001)).1 Intuitively, VaR measures the total risk in
a portfolio of financial assets by summarizing many complex
undesired outcomes in a single monetary number. It naturally
represents a compromise between the needs of different users.
The conceptual simplicity and compromise have made VaR the
most popular measure of risk among practitioners in spite of its
weakness.2
In this paper, we will develop econometric tools for investi-

gating comovements of large changes between two time series.
A leading motivating example is the spillover of extreme down-
side movements between financial markets when markets are
integrated and suffer from the same global shock, or due to ‘‘mar-
ket contagion’’. Using VaR as a measure of extreme downside mar-
ket risk, we first introduce a new concept of Granger causality in
risk, where a large risk is said to have occurred at a prespecified
level if actual loss exceeds VaR at the given level. As is well-known,
Granger causality (Granger, 1969, 1980) is not a relationship be-
tween ‘‘causes’’and ‘‘effects’’. Instead, it is defined in terms of
incremental predictive ability. This concept is suitable for the pur-
pose of predicting and monitoring risk spillover and can provide
valuable information for investment decisions, risk capital alloca-
tion and external regulation. We then propose a class of econo-
metric procedures to detect Granger causality in risk between
financial markets. Utilizing the most concerned information, it
checks whether the past history of the occurrences of large risks in
onemarket has predictive ability for the future occurrences of large
risks in another market. We emphasize that the scope of the appli-
cability of the concept of Granger-causality in risk is not limited to
financial markets and financial positions (e.g., investment portfo-
lios). For example, it can also be used to investigate the spillover
of international business cycles, where the understanding of the
mechanism of how a large negative shock transmits across differ-
ent economies is vital to international policy coordination to alle-
viate its adverse impact on the world economy.
Our proposed procedure has a number of appealing features.

First, it checks an increasing number of lags as the sample size T
grows. This ensures power against a wide range of alternatives of
extreme downside risk spillover. Secondly, our frequency domain
kernel-based approach naturally discounting higher order lags
alleviates the loss of a large number of degrees of freedom and

1 VaR is a measure of extreme downside risk and is similar in methodology to
lower partial moments in the earlier literature (e.g., Roy (1952)).
2 For example, Artzner (1999) defines certain properties that a good riskmeasure
should have and shows that VaR does not satisfy all of them. Many other kinds of
risk measures have been proposed but none gained the popularity as VaR.
thus enhances good power of the test, which many chi-square
tests with a large number of lags (e.g., Box and Pierre’s (1970)
portmanteau test) suffer. Downward weighting for higher order
lags is consistent with the stylized fact that today’s financial
markets are often more influenced by the recent events than by
the remote past events. Indeed, simulation shows that nonuniform
weighting is more powerful than uniform weighting and a
Granger-type regression-based procedure. Finally, our procedure
is easy to implement, particularly since the VaR calculation has
been available in the standard toolbox of risk managers’ desk.
In Section 2, we describe the concept of Granger causality

in risk and discuss its differences from the concepts of Granger
causality in mean (Granger, 1969), Granger causality in variance
(Granger et al., 1986) and general Granger causality (Granger,
1980). In Section 3, we use a cross-spectral approach to test
one-way Granger causality in risk. The kernel method is used.
Section 4 develops the asymptotic theory, and Section 5 considers
extensions to bilateral Granger causalities in risk. In Section 6, a
simulation study examines the finite sample performance of the
proposed procedures. Section 7 presents an empirical application
to the Eurodollar and the Japanese Yen. It is found that a large
downward movement in the Eurodollar Granger-causes a large
downward movement in the Japanese Yen, and the causality
is stronger for larger movements. On the other hand, Granger
causality in risk from the Japanese Yen to the Eurodollar is
much weaker or nonexistent. Section 8 concludes the paper. All
mathematical proofs are collected in the Appendix. Throughout,
∆ and ∆0 denote bounded constants;→d and→p convergences
in distribution and in probability respectively; and ‖A‖ the usual
Euclidean norm of A. Unless indicated, all limits are taken as the
sample size T →∞. A GAUSS code for implementing the proposed
procedures is available from the authors.

2. Granger causality in risk

2.1. Extreme downside market risk and Value at Risk

For a given time horizon τ and confidence level 1 − α, where
α ∈ (0, 1), VaR is defined as the loss over the time horizon τ
that is not exceeded with probability 1− α. Statistically speaking,
VaR, denoted by Vt ≡ V (It−1, α), is the negative α-quantile
of the conditional probability distribution of a time series Yt
(e.g., portfolio return), which satisfies the following equation:
P (Yt < −Vt |It−1) = α almost surely ( a.s.), (2.1)
where It−1 ≡ {Yt−1, Yt−2, . . .} is the information set available at
time t − 1. In financial risk management, the left tail probability
in (2.1) is usually called the shortfall probability. For notational
simplicity, we have suppressed the dependence of Vt on level α.
In practice, commonly used levels for α are 10%, 5% or 1%.
To gain insight into VaR from a statistical perspective, we write

the time series {Yt} as follows:{
Yt = µt + σtεt ,
{εt} ∼ m.d.s. (0, 1) with conditional CDF Ft(·),

(2.2)

where µt ≡ µt(It−1) and σ 2t ≡ σ
2
t (It−1) are the conditional mean

and conditional variance of Yt given It−1 respectively, and Ft(·) ≡
Ft(·|It−1) is the conditional cumulative distribution function (CDF)
of εt given It−1. By definition, the standardized innovation {εt}
is a conditionally homoskedastic martingale difference sequence
(m.d.s.) with E(εt |It−1) = 0 a.s. and var(εt |It−1) = 1 a.s., but
its higher order conditional moments, such as skewness and kur-
tosis, may be time-varying. An example is Hansen’s (1994) autore-
gressive conditional density model where {εt} follows a general-
ized Student-t-distribution with time-varying shape parameters.
From (2.1) and (2.2), we obtain the VaR

Vt = −µt + σtzt(α), (2.3)
where zt(α) ≡ z(It−1, α) is the left-tailed critical value at level
α of the conditional distribution Ft(·) of εt; that is, zt(α) satisfies
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Ft [zt(α)] = α. Obviously, Vt depends on not only the conditional
mean µt and conditional variance σ 2t of Yt , but also its higher
order conditional moments (e.g., skewness and kurtosis). There
is increasing empirical evidence that the conditional skewness
and kurtosis of financial time series are time-varying (e.g., Gallant
et al. (1991), Hansen (1994), Harvey and Siddique (1999, 2000)
and Jondeau and Rockinger (2003)). Some time series econometric
models, such as those of Gallant and Tauchen (1996), Hansen
(1994) and Harvey and Siddique (2000), can capture time-varying
higher order conditional moments. Note that in (2.2), Yt is not
covariance-stationary if σ 2t follows an integrated GARCH process
(Engle and Bollerslev, 1986). In this case, the unconditional
variance of {Yt} does not exist, but its VaR is well-defined.

2.2. Granger causality in risk

To characterize whether the occurrence of a large risk in
one market (Y1t ) can help predict the occurrence of a large
risk in another market (Y2t) in the spirit of Granger (1969,
1980) causality, we now define a concept of Granger causality
in the tail distributions. Put It−1 ≡ (I1(t−1), I2(t−1)), where
I1(t−1) = {Y1(t−1), . . . , Y11} and I2(t−1) = {Y2(t−1), . . . , Y21} are
the information sets available at time t − 1 for two time series
respectively. Suppose
H01 : P

(
Y1t < −V1t |I1(t−1)

)
= P (Y1t < −V1t |It−1) a.s.,

we say that the time series {Y2t} does not Granger-cause the time
series {Y1t} in risk at level α with respect to information set It−1.
On the other hand, if

HA1 : P
(
Y1t < −V1t |I1(t−1)

)
6= P (Y1t < −V1t |It−1) , (2.4)

we say that the time series {Y2t} Granger-causes the time series
{Y1t} in risk at level α with respect to It−1. In this case, the
information of the occurrence of a risk in {Y2t} can be used to
predict the occurrence of a future risk in {Y1t}. In practice, level
α can be determined by regulators or practitioners, depending on
their objective function or risk attitude.
In time series econometrics, the most commonly used Granger

causality concept is Granger causality in mean, which was first
introduced in Granger (1969). Granger et al. (1986, p. 2) also
introduce a concept of Granger causality in variance, which
can be used to investigate volatility spillover between financial
markets (Engle et al., 1990; Cheung and Ng, 1996), or between
macroeconomic time series (Granger et al., 1986). Here, the
concept of Granger causality in risk focuses on the comovements
between the left tails of two distributions, which is more
suitable than the concept of Granger causality in variance in
characterizing extreme downside risk spillover between financial
markets, because as pointed out earlier volatility is a two-sided risk
measure and it cannot capture heavy tails due to jumps. Granger
causality in risk can arise not only from comovements in mean
and in variance, but also from the comovements in higher order
conditional moments (e.g., skewness and kurtosis). Therefore, it
may rise even in the absence of Granger causality in mean and in
variance.
Granger (1980) introduces a general Granger causality in

terms of the entire conditional probability distribution P(Y1t ≤
y|I1(t−1)) 6= P(Y1t ≤ y|It−1) for all y ∈ (−∞,∞). Our concept
of Granger causality in risk is more closely related to this general
Granger causality, but again we only focus on left tail probabilities,
which are more relevant to large downside market risks.
On the other hand, our concept of Granger causality in risk in

(2.4) can be extended to define the following concept of Granger
causality in expected shortfall:

HA1 : E
(
Y1t |Y1t < −V1t , I1(t−1)

)
6= E (Y1t |Y1t < −V1t , It−1) . (2.5)

The expected shortfall has been argued in the literature to
be a better measure for downside market risk than VaR. It is
straightforward to extend our procedures developed below to test
(2.5), but for the sake of space we defer it to subsequent research.
3. Method and test statistics

To develop tests for Granger causality in risk, we first formulate
our hypotheses H01 versus HA1 as hypotheses on Granger causality
in mean, after a proper transformation of {Y1t , Y2t}. Define the risk
indicator

Zlt ≡ 1 (Ylt < −Vlt) , l = 1, 2

where 1(·) is the indicator function. The indicator Zlt takes value
1 when actual loss exceeds VaR and takes value 0 otherwise. Then
H01 and HA1 can be equivalently stated as

H01 : E
(
Z1t |I1(t−1)

)
= E (Z1t |It−1) a.s. (3.1)

versus

HA1 : E
(
Z1t |I1(t−1)

)
6= E (Z1t |It−1) . (3.2)

Thus, Granger causality in risk between {Y1t} and {Y2t} can be
viewed as Granger causality in mean between {Z1t} and {Z2t}. We
emphasize that this does not imply that the popular regression-
based test proposed by Granger (1969) can be used here, because
the risk indicator Zlt has to be estimated, and parameter estimation
uncertainty has a nontrivial impact and should be taken care of
properly. However, the formulation in (3.1)motivates us to use the
cross-spectrum of {Z1t , Z2t} below,which is used in Granger (1969)
to define the concept of Granger causality in mean.
The cross-spectrum is a natural and powerful tool to investigate

Granger causality in mean between two time series (Granger,
1969). To see the implications of H01 on the cross-spectrum
between {Z1t} and {Z2t}, we first note that for a bivariate
covariance-stationary process {Z1t , Z2t}, the normalized cross-
spectral density is

f (ω) ≡
1
2π

∞∑
j=−∞

ρ(j)e−ijω, ω ∈ [−π, π], i =
√
−1,

where ρ(j) ≡ corr(Z1t , Z2(t−j)). Because ρ(j) 6= ρ(−j), f (ω) is
generally complex-valued.
The patterns of ρ(j) and f (ω) contain valuable information on

Granger causality in risk between {Y1t} and {Y2t}. Because ρ(j) and
f (ω) are Fourier transforms of each other, they contain the same
information about cross-correlation between {Z1t} and {Z2t}. One
could use either ρ(j) or f (ω) to test H01. In this paper, we use f (ω),
which has a number of appealing features, as will be seen below.
Under H01, ρ(j) = 0 for all j > 0 and as a consequence, f (ω)
becomes

f 01 (ω) ≡
1
2π

0∑
j=−∞

ρ(j)e−ijω, ω ∈ [−π, π].

Thus, we can compare f (ω) and f 01 (ω) to test H01. Any nontrivial
difference between them is evidence against H01.
It may be noted that the history of the risk indicators {Z2s, s <

t} is only a subset of I2(t−1). One can also use other information
in I2(t−1) to predict Granger causality in risk. However, the use
of the risk indicators {Z2s, s < t} is suitable when one is
interested in the comovements of extreme changes between two
markets. Moreover, a large change in one market may be induced
by a change in another market only when the latter exceeds a
certain threshold. We note that Bae et al. (2003) also consider the
coincidence of extreme return shocks across countries, but their
approach is based on themarginal distributions of asset returns. In
practice, the spillover in the tails of the conditional distributions
could be more relevant and important. A risk manager, for
example, may be concerned with whether an incurred loss for a
portfolio will exceed a certain prespecified value given that a large
loss in another market or another portfolio has occurred.
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Both f (ω) and f 01 (ω) are unknown, but they can be estimated
consistently by nonparametric methods. The kernel method is
the most commonly used in nonparametric spectral estimation.
In this paper, we will use the kernel method, which has simple
and intuitive appeal in the present context. Most importantly,
it naturally provides a flexible downward weighting for higher
lag orders, which is consistent with the stylized fact that today’s
financial markets are more affected by the recent events than by
the remote events and is expected to enhance the power of the
proposed procedure.
Suppose

Vlt(θl) ≡ Vl(Il(t−1), θl), l = 1, 2,

is a parametric VaR model for Vlt , where θl is an unknown
finite-dimensional parameter. There have been many methods
to estimate VaR (e.g., Chernozhukov and Umantsev (2001),
Engle and Manganelli (2004) and Jorion (2000)). Examples are
historical simulation methods, Hansen’s (1994) autoregressive
conditional densitymodel, Morgan’s (1996) RiskMetrics, and Engle
and Manganelli’s (2004) conditional autoregressive VaR (CAViaR)
models. Suppose further we have a random sample {Y1t , Y2t}Tt=1 of
size T , and an estimator θ̂l. Put

Ẑlt ≡ Zlt(θ̂l), l = 1, 2,

where Zlt(θl) ≡ 1[Ylt < −Vlt(θl)]. Then we can define the sample
cross-covariance function between {Ẑ1t} and {Ẑ2t},

Ĉ(j) ≡


T−1

T∑
t=1+j

(Ẑ1t − α̂1)(Ẑ2(t−j) − α̂2), 0 ≤ j ≤ T − 1,

T−1
T∑

t=1−j

(Ẑ1(t+j) − α̂1)(Ẑ2t − α̂2), 1− T ≤ j < 0,
(3.3)

where α̂l ≡ T−1
∑T
t=1 Ẑlt . The sample cross-correlation function

between {Ẑ1t} and {Ẑ2t} is

ρ̂(j) ≡ Ĉ(j)/Ŝ1Ŝ2, , j = 0,±1, . . . ,±(T − 1),

where Ŝ2l ≡ α̂l(1 − α̂l) is the sample variance of {Ẑlt}.3 With
{ρ̂(l)}, the kernel estimators for the cross-spectral densities f (ω)
and f 01 (ω) can be given as follows:

f̂ (ω) ≡
1
2π

T−1∑
j=1−T

k(j/M)ρ̂(j)e−ijω, (3.4)

f̂ 01 (ω) ≡
1
2π

0∑
j=1−T

k(j/M)ρ̂(j)e−ijω, (3.5)

To compare f̂ (ω) and f̂ 01 (ω), we use the quadratic form

L2
(
f̂ , f̂ 01

)
≡ 2π

∫ π

−π

∣∣∣f̂ (ω)− f̂ 01 (ω)∣∣∣2 dω = T−1∑
j=1

k2(j/M)ρ̂2(j),(3.6)

where the second equality follows by Paserval’s identity. We need
not calculate numerical integrations over frequency ω. Our test
statistic forH01 versusHA1 is a standardized version of the quadratic
form:

Q1(M) ≡

[
T
T−1∑
j=1

k2(j/M)ρ̂2(j)− C1T (M)

]/
D1T (M)

1
2 , (3.7)

3 We can replace α̂l with α. This does not affect the asymptotic distribution of the
proposed test statistic under H01 .
where the centering and standardization constants are

C1T (M) ≡
T−1∑
j=1

(1− j/T )k2(j/M),

D1T (M) ≡ 2
T−1∑
j=1

(1− j/T )(1− (j+ 1)/T )k4(j/M).

The factors (1 − j/T ) and [1 − (j + 1)/T ] are finite sample
corrections. They could be replaced by 1. Both C1T (M) and D1T (M)
are approximately the mean and variance of the quadratic form
TL2(f̂ , f̂0). What Q1(M) checks here is not the original hypothesis
but only its necessary condition. However, it captures the most
important information to deliver a feasible test.
To compute Q1(M), one can use the truncated kernel

kT (z) = 1(|z| ≤ 1), (3.8)
where 1(·) is the indicator function. This yields the following test
statistic4

Q1TRUN(M) =

[
T
M∑
j=1

ρ̂2(j)−M

]/
(2M)

1
2 . (3.9)

This test gives an equal weight to each of the first M lags. It is
essentially equivalent to a Granger-type procedure based on the
following auxiliary regression

Ẑ1t = α0 +
M∑
j=1

αjẐ2(t−j) + ut , (3.10)

which checks whether the coefficients {αj}Mj=1 are jointly zero.
This is similar to Pierce and Haugh’s (1977) residual-based test
for Granger causality in mean. Here we need not include the
lagged variables of Ẑ1t because {Z1t} is a sequence of i.i.d. Bernoulli
random variables under the null hypothesis. For the estimated Ẑ1t ,
(3.10) holds asymptotically, which is almost satisfied in practical
applications where usually large samples are used to estimate the
parameters in VaR model. Granger (1969) proposes a popular test
for causality inmean based on a regression similar to (3.10), with a
fixed but arbitrarily largeM . To ensure that the regression test has
power against a large class of alternatives, we letM grow with the
sample size T properly. This delivers a R2-based test statistic

Q1REG = (TR2 −M)/(2M)1/2, (3.11)
where R2 is the centered squared multi-correlation coefficient
from the regression in (3.10). We may view this test as a
generalized version of Granger’s (1969) test forH01. This procedure
is simple and intuitive. It could be shown that Q1REG(M) is
asymptotically equivalent toQ1TRUN(M)underH01.WhenM is large,
however, both Q1TRUN(M) and Q1REG(M) may not deliver good
power against alternatives of practical importance. As a stylized
fact, today’s financial markets are often more influenced by the
recent events than by the remote events, which implies that the
dependence of Z1t on the Z2(t−j) will eventually diminish as lag
order j increases. Consequently, it is more efficient to discount
higher order lags. Themost commonly used kernels are downward
weighting for higher order lags. Examples are the Bartlett, Daniell,
Parzen, and Quadratic-Spectral kernels.5In contrast, the Q1TRUN(M)
and Q1REG(M) tests are not fully efficient when M is large. See
Sections 4 and 6 for more discussion and simulation studies.

4 For k(z) = 1(|z| ≤ 1), we have C1T (M) = M[1 − (M + 1)/(2T )] and
D1T (M) = 2M[1−(M+2)/T+(M+1)(M+2)/(3T 2)]. Under suitable conditions on
M , we can conveniently approximate C1T (M) andD1T (M) byM and 2M respectively.
5 Engle (1982), in the context of testing the existence of ARCH effects, also
considers linearly declining weighting for lag orders (which is equivalent to the
Bartlett kernel) to increase the power of his LM test. Here, we allow for a more
general flexible weighting and allowM to grow with T .
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The key step in implementing our procedure lies in the VaR
estimation. This is relatively simple for practitioners in the real
financial industry, because VaR can be easily calculated by most
standard risk management softwares. Furthermore, VaR can be set
not only at the commonly used 1% or 5% level, but also at any
level which the investors or risk managers may be interested in.
For example, investors often impose the stop-loss rule for their
portfolio investments. Our procedure can be applied to investigate
risk spillover at the stop-loss level.

4. Asymptotic theory

We now derive the limit distribution of the Q1(M) test under
H01. Its derivation is complicated by the fact that we do not
observe the true parameter values {θ0l } and have to estimate them.
Parameter estimation uncertainty in {θ̂l} has to be dealt with
properly, as is encountered by Engle andManganelli (2004), where
the interest is in testing the adequacy of an univariate VaR model,
and parameter estimation uncertainty has a nontrivial impact
on the limit distribution of the test statistic, which complicates
the construction of their test statistic. In particular, it involves
nonparametric estimation of the conditional probability density of
the underlying process.
Our nonparametric cross-spectral approach fortunately enables

us to get rid of the impact of θ̂l asymptotically. Intuitively, θ̂l
converges to θ0l faster than the nonparametric estimators f̂ (ω)
and f̂ 01 (ω) to f (ω) and f

0
1 (ω) respectively. As a consequence, the

limit distribution of Q1(M) is solely determined by the kernel
estimators f̂ (ω) and f̂ 01 (ω). One can proceed as if θ

0
l were known

and equal to θ̂l. Thus, replacing θ0l with θ̂l has no impact on the
limit distribution ofQ1(M). This greatly simplifies the construction
and implementation of our test because we need not know the
asymptotic expansion of {θ̂l} and can choose any convenient

√
T -

consistent estimator.
To justify the above heuristics, we impose a set of regularity

conditions on the data generating process {Ylt}, the VaR models
Vlt(θl), the parameter estimators θ̂l, and the kernel function k(·).

Assumption 1. For l = 1, 2, {Ylt} is a stochastic time series process
with unknown twice continuously differentiable conditional
distribution function Flt(y) ≡ P(Ylt ≤ y|It−1), where y ∈ R and
It−1 is the information available at time t − 1.

Assumption 2. For θl ∈ Θl ⊂ Rdl , where dl is a positive
integer, l = 1, 2, Vlt(θl) ≡ Vl(Il(t−1), θl) is a VaR model
at level α ∈ (0, 1) such that (i) for each θl ∈ Θl,
Vlt(θl) is a measurable function of Il(t−1); (ii) with probability 1,
Vlt(·) is twice continuously differentiable with respect to θl ∈
Θl,with limT→∞ T−1

∑T
t=1 E supθl∈Θl ‖

∂
∂θ
Flt [−Vlt(θl)]‖4 <∞ and

limT→∞ T−1
∑T
t=1 E supθl∈Θl ‖

∂2

∂θ∂θ ′
Flt [−Vlt(θl)]‖2 <∞.

Assumption 3. For l = 1, 2, there exists some θ0l ∈ Θl such
that (i) P[Ylt < −Vlt(θ0l )|Il(t−1)] = α a.s.; (ii) the risk indicator
Z2t(θ02 ) ≡ 1[Y2t < −V2t(θ02 )] depends on an arbitrarily long but
finite length of the current and past history of {Z1s(θ01 ) ≡ 1[Y1s <
−V1s(θ01 )], s ≤ t}.

Assumption 4. T
1
2 (θ̂l − θ

∗

l ) = OP(1) for l = 1, 2, where θ
∗

l ≡

p lim θ̂l and θ∗l = θ
0
l under the null hypothesis of interest.

Assumption 5. Put St(θ) ≡ [S1t(θ1)′, S2t(θ2)′]′ and Zt(θ) ≡
[Z1t(θ1), Z2t(θ2)]′, where Slt(θl) ≡ ∂

∂θl
Flt [−Vlt(θl)]. Then {St(θ∗)′,

Zt(θ∗)′}′ is a fourth order stationary process such that
(i)
∑
∞

j=0 ‖Γ (j)‖ ≤ ∆, where Γ (j) ≡ cov[St(θ∗), Zt−j(θ∗)′];
(ii)

∑
∞

j=−∞
∑
∞

k=−∞
∑
∞

l=−∞ ‖κ0(j, k, l)‖ ≤ ∆, where κ0(j, k, l) is
the fourth order cumulant of the joint distribution of {St(θ∗)′ −
ESt(θ∗)′, Zt−j(θ∗)′ − EZt−j(θ∗)′, St−k(θ∗)′ − ESt−k(θ∗)′, Zt−l(θ∗)′ −
EZt−l(θ∗)′}′.

Assumption 6. k : R → [−1, 1] is a symmetric function that is
continuous at 0 and all points except a finite number of points on
R, with k(0) = 1 and

∫
∞

−∞
k2(z)dz <∞.

Assumption 1 is a standard regularity condition on the
bivariate data generating process for {Y1t , Y2t}. We allow for
some covariance-nonstationary processes {Ylt}. An example is the
integrated GARCH process (Engle and Bollerslev, 1986), which is
strictly stationary but not covariance-stationary (Nelson, 1991).
Assumption 2 provides regularity smoothness and moment

conditions on the VaR models Vlt(θl). There are various VaR
models in the literature (e.g., Chernozhukov and Umantsev
(2001), Duffie and Pan (1997), Engle and Manganelli (2004)
and Jorion (2000)). Some of them essentially specify the whole
conditional distribution of Ylt while others only specify the
left tail of the conditional distribution. Examples of the former
include Morgan’s (1996) RiskMetrics, GARCH models with i.i.d.
innovations, Hansen’s (1994) autoregressive conditional density
model with a generalized Student-t-distribution, and examples of
the latter include Engle and Manganelli’s (2004) CAViaR models.
Assumption 3 imposes some conditions on the VaR models

which will be required only under H01. Assumption 3(i) is the
condition on the adequacy of VaR models, which can be checked
using the methods of Chernozhukov and Umantsev (2001),
Christoffersen et al. (2001) and Engle and Manganelli (2004).
Assumption 3(ii) allows for the possibility that underH01, although
{Z2s(θ02 ), s < t} does not affect Z1t(θ

0
1 ), Z2t(θ

0
2 )may depend on the

current and past history of {Z1s(θ01 ), s ≤ t}. In other words, there
may exist instantaneous Granger causality between Z1t(θ01 ) and
Z2t(θ02 ) and/or Granger causality from {Z1s(θ

0
1 ), s < t} to Z2t(θ

0
2 )

under H10. For simplicity, Assumption 3(ii) assumes that Z2t(θ
0
2 )

depends on an arbitrarily long but finite history of {Z1s(θ01 ), s ≤ t}.
It is possible to allow Z2t(θ02 ) to depend on the entire past history of
{Z1s(θ01 ), s ≤ t}, with a suitable rate condition on the dependence
of Z2t(θ02 ) on the history of {Z1s(θ

0
1 ), s ≤ t}, and the test statistic

and its limit distribution remain unchanged. However, we do not
consider this possibility here for simplicity.
Assumption 4 does not require any specific estimation method.

In particular, θ̂l need not be asymptotically most efficient; any√
T -consistent estimator of θ0l suffices under H10. An example
is Engle and Manganelli’s (2004) regression quantile estimator.
We do not require parameter estimation consistency under the
alternative H1A. Thus, the probability limit θ

∗

l may not coincide
with θ0l under H1A. Moreover, we need not know the asymptotic
expansion of {θ̂l}. These features greatly simplify the construction
and implementation of the proposed tests.
Assumption 5 is a regularity condition on the serial dependence

of the process {St(θ∗)′, Zt(θ∗)′}′. Under H01, we have Zlt(θ
∗

l ) =

Zlt(θ0l ) = Zlt . Thus, {Z1t(θ∗1 )} is an i.i.d. Bernoulli(α) sequence
and Z1t(θ∗1 ) is independent of {Z2s(θ

∗

2 ), s < t}. However, the
derivative ∂

∂θ1
E[Z1t(θ∗1 )|It−1] = S1t(θ

∗

1 ) generally depends on It−1
even under H01. We note that the fourth order cumulant condition
in Assumption 5(ii) is a standard assumption in time series analysis
(e.g., Hannan (1970)).
Finally, Assumption 6 is a standard regularity condition on

the kernel k(·). Among other things, the condition that k(0) = 1
ensures that the asymptotic biases of the kernel-based cross-
spectral density estimators f̂ (ω) and f̂ 01 (ω) vanish as sample size
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T → ∞. Most commonly used kernels satisfy Assumption 6 (see,
e.g., Priestley (1981)).
We now state the asymptotic normality of Q1(M) under H01.

Theorem 1. Suppose Assumptions 1–6 hold and M = cT ν, where
0 < c < ∞, 0 < ν < 1

2 , ν < min( 2
d−2 ,

3
d−1 ) if

d ≡ max(d1, d2) > 2, and dl is the dimension of θl. Then
Q1(M)→d N(0, 1) under H01.

The condition that ν < min( 2
d−2 ,

3
d−1 ) if d > 2 is sufficient but

may not be necessary. This is imposed to simplify the treatment of
the impact of parameter estimation uncertainty in {θ̂l}. It could be
weakened at a cost of a more tedious proof. In the present context,
the technical treatment of parameter estimation uncertainty is not
trivial, because the risk indicator Zlt(θl) is not differentiable with
respect to θl. From the proof of Theorem 1 (see Theorem A.1 in the
Appendix), we find that parameter estimation uncertainty in θ̂l has
no impact on the limit distribution of Q1(M). This occurs because
θ̂l converges to θ0l faster than the kernel cross-spectral estimators
f̂ (ω) and f̂ 01 (ω) to f (ω) and f

0
1 (ω) respectively.

To understand the intuition why Q1(M) is asymptotically
N(0, 1), we consider the Q1TRUN(M) test that is based on the
truncated kernel in (3.8). First, suppose θ0l were known. Then
as T → ∞, we have

√
T ρ̂(j)→d N(0, 1) at each lag j > 0

and cov[
√
T ρ̂(j1),

√
T ρ̂(j2)] → 0 for any j1 6= j2 under H10.

Consequently,
∑M
j=1 T ρ̂

2(j), being the sum of M asymptotically
independent χ21 random variables, are asymptotically distributed
as χ2M . By the well-known normal approximation of χ

2
M when M

is large, we obtain the asymptotic normality of Q1TRUN(M). The
impact of parameter estimation uncertainty in θ̂l is atmost an finite
adjustment,which is asymptotically negligible asM becomes large.
This intuition remains valid for nonuniform kernels.
To investigate the asymptotic behavior of the Q1(M) test under

HA1 , we impose a condition on the cross-correlation ρ(j) and a
fourth order cumulant condition.

Assumption 7. Let ρ(j) = cov[Z1t(θ∗), Z2(t−j)(θ∗)]. Then
(i)
∑
∞

j=1 ρ
2(j) < ∞; (ii)

∑
∞

j=−∞
∑
∞

k=−∞
∑
∞

l=−∞ |κ1(j, k, l)| <
∞,where κ1(j, k, l) is the fourth order cumulant of the joint distri-
bution of {Z1t(θ∗1 )−EZ1t(θ

∗

1 ), Z2(t−j)(θ
∗

1 )−EZ2(t−j)(θ
∗

2 ), Z1(t−k)(θ
∗

1 )−

EZ1(t−k)(θ∗1 ), Z2(t−l)(θ
∗

2 )− EZ2(t−l)(θ
∗

2 )}.

Assumption 7(i) implies that the dependence of Z1t(θ∗1 ) on
{Z2s(θ∗2 ), s < t} decays to zero at a suitable rate, but it still
allows for certain strongly cross-dependent processes whose
cross-correlation decays to zero at a slow hyperbolic rate. We
do not impose any condition on the dependence of Z2t(θ∗2 ) on
{Z1s(θ∗1 ), s ≤ t}, because we only check the one-way Granger
causality from {Z2t(θ∗2 )} to {Z1t(θ

∗

1 )}with respect to It−1.

Theorem 2. Suppose Assumptions 1–7 hold and M = cT ν for 0 <
c < ∞ and 0 < ν < 1. Then (M

1
2 /T )Q1(M)→p

[2
∫
∞

0 k
4(z)

dz]−
1
2
∑
∞

j=1 ρ
2(j) under HA1.

Thus, for any sequence of constants, KT = o(T 1−
ν
2 ), we have

P[Q1(M) > KT ] → 1 whenever ρ(j) 6= 0 for some j > 0. In
otherwords, theQ1(M) test has asymptotic unit power at any given
significance level whenever ρ(j) 6= 0 for some j > 0. Because
Q1(M) → +∞ whenever ρ(j) 6= 0 for some j > 0, upper-tailed
N(0, 1) critical values are appropriate. For example, the critical
value at the 5% significance level is 1.65. We note also that the
condition onM under HA1 is weaker than that under H01.
Hong (1996) shows that over a class of kernels

K(τ ) =
{
k(·) : k(0) = 1,

∫
∞

−∞

k(z)dz <∞,

k2 ≡ lim
z→0

1− k(z)
z2

∈ (0,∞)
}

which includes the Parzen and Quadratic-Spectral kernels (but
not the Bartlett kernel), the Daniell kernel kD(z) = sin(πz)/πz
minimizes

∫
∞

0 k
4(z)dz. Using this result, it can be shown that the

Daniell kernel kD(·) maximizes the asymptotic power of Q1(M)
in terms of Bahadur’s (1960) asymptotic efficiency criterion. Of
course, the relative efficiency of nonuniformkernels inK(τ ) is very
close to each other. This implies that the choice of kernel k(·) is not
important, provided the truncated (i.e., uniform) kernel in (3.8) is
not used. Intuitively, the cross-dependence |ρ(j)| decays to zero
as j → ∞ under Assumption 7, so it is more efficient to discount
higher order lags than to put an equal weight for each lag.

5. Bilateral Granger causality in risk

We now extend our analysis to two-way Granger causalities
in risk. We consider the hypothesis that neither {Y1t} nor {Y2t}
Granger-causes each other in risk at level α with respect to It−1.
The hypotheses of interest are
H02 : P

(
Ylt < −Vlt |Il(t−1)

)
= P (Ylt < −Vlt |It−1) a.s. for both l = 1, 2 (5.1)

versus
HA2 : P

(
Ylt < −Vlt |Il(t−1)

)
6= P (Ylt < −Vlt |It−1) for at least one l. (5.2)

Using the risk indicator {Zlt}, we can write these hypotheses as
H02 : E

(
Zlt |Il(t−1)

)
= E (Zlt |It−1) a.s. for both l = 1, 2.

versus
HA2 : E

(
Zlt |Il(t−1)

)
6= E (Zlt |It−1)

for at least one l, where l = 1, 2.
Under H02, the past information of one series is not useful for

predicting the risk of the other series, and their cross-spectral
density f (ω) becomes a flat spectrum:

f 02 (ω) ≡
1
2π
ρ(0), ω ∈ [−π, π]

where ρ(0) is nonzero when there exists instantaneous causality
between Z1t and Z2t . A consistent estimator for f 02 (ω) is

f̂ 02 (ω) ≡
1
2π
ρ̂(0), ω ∈ [−π, π].

Our test statistic for H02 versus HA2 is a properly standardized
version of a quadratic form between f̂ (ω) and f̂ 02 (ω):

Q2(M) ≡

[
T
T−1∑
|j|=1

k2(j/M)ρ̂2(j)− C2T (M)

]/
[D2T (M)]

1
2 , (5.3)

where the centering and scaling factors are

C2T (M) =
T−1∑
|j|=1

(1− |j|/T )k2(j/M),

D2T (M) = 2
[
1+ ρ̂4(0)

] T−1∑
|j|=1

(1− |j|/T )(1− (|j| + 1)/T )k4(j/M).

Note that D2T (M) involves the cross-correlation estimator ρ̂(0),
which has taken into account the possible instantaneous correla-
tion between Z1t and Z2t under H02.
The Q2(M) statistic is asymptotically N(0, 1) under H02, as is

stated below.



Y. Hong et al. / Journal of Econometrics 150 (2009) 271–287 277
Theorem 3. Suppose Assumptions 1–3(i) and 4–6 hold, and M =
cT ν, where 0 < ν < 1

2 , ν < max(
2
d−2 ,

3
d−1 ) if d ≡ max(d1, d2) >

2, and dl is the dimension of θl, l = 1, 2. Then Q2(M)→d N(0, 1)
under H02.

We do not need Assumption 3(ii) here, because under H02,
neither {Z1t} nor {Z2t} Granger-causes each other with respect to
It−1. Nevertheless, we allow for instantaneous Granger causality
between Z1t and Z2t under H02.
To study the asymptotic behavior of the Q2(M) test under HA2 ,

we strengthen Assumption 7 slightly to cover two-way cross-
correlations.

Assumption 8. (i)
∑
∞

j=−∞ ρ
2(j) < ∞ and (ii)

∑
∞

j=−∞
∑
∞

k=−∞∑
∞

l=−∞ |κ1(j, k, l)| < ∞, where ρ(j) and κ1(j, k, l) are as in
Assumption 7.

Theorem 4. Suppose Assumptions 1, 2, 4–6 and 8 hold, and
M = cT ν for 0 < c < ∞ and 0 < ν < 1.

Then {
√
1+ ρ4(0)M

1
2 /T }Q2(M)→p

[
2
∫
∞

−∞
k4(z)dz

]− 12 ∑∞
|j|=1 ρ

2

(j) under HA2.

Thus, whenever there exists Granger causality in risk between
{Y1t} and {Y2t} with respect to It−1 such that ρ(j) 6= 0 for some
j 6= 0, the Q2(M) test will have asymptotic unit power at any
given significance level. Note that the asymptotic variance depends
on ρ(0), which arises due to the presence of instantaneous risk
spillover under H02.

6. Finite sample performance

We now examine the finite sample performance of the
proposed tests via simulation. For the sake of space,we focus on the
Q1(M) test in (3.7);Q2(M) in (5.3) is expected to perform similarly.
Throughout this section, we work with the following data

generating process (DGP):
Ylt = βl1Y1t−1 + βl2Y2t−1 + ult , l = 1, 2,
ult = σltεlt ,
σ 2lt = γl0 + γl1σ

2
lt−1 + γl2u

2
1t−1 + γl3u

2
2t−1,

εlt ∼ m.d.s. (0, 1).

(6.1)

To investigate both the size and power of our test, we consider the
following cases under (6.1):
NULL [No Granger Causality in Risk]:{
(β11, β12, γ10, γ11, γ12, γ13) = (0.5, 0, 0.1, 0.6, 0.2, 0),
(β21, β22, γ20, γ21, γ22, γ23) = (0, 0.5, 0.1, 0.6, 0, 0.2).

ALTER1 [Granger Causality in Risk from Mean]:{
(β11, β12, γ10, γ11, γ12, γ13) = (0.5, 0.2, 0.1, 0.6, 0.2, 0),
(β21, β22, γ20, γ21, γ22, γ23) = (0, 0.5, 0.1, 0.6, 0, 0.2).

ALTER2 [Granger Causality in Risk from Variance]:{
(β11, β12, γ10, γ11, γ12, γ13) = (0.5, 0, 0.1, 0.5, 0.2, 0.7),
(β21, β22, γ20, γ21, γ22, γ23) = (0, 0.5, 0.1, 0.5, 0.2, 0).

Under NULL, there is no Granger causality in risk between {Y1t}
and {Y2t} with respect to It−1. This allows us to examine the size
of the Q1(M) test in finite samples. On the other hand, there exists
Granger causality in risk under both ALTER1 and ALTER2, but with
different sources of spillover. Under ALTER1, there exists Granger
causality inmeanbut not in anyhigher order conditionalmoments.
Under ALTER2, there exists Granger causality in variance, but not
inmean and other higher order conditional moments. Spillovers in
mean and in variance aremost commonly studied in the literature;
ALTER1 and ALTER2 allow us to investigate how well our test can
detect risk spillover from these sources.
Recent empirical studies (e.g., Hansen (1994), Harvey and

Siddique (1999, 2000), Jondeau and Rockinger (2003) and Hong
et al. (2004, 2007)) find evidence of time-varying skewness and
kurtosis for various financial time series. It is therefore conceivable
that Granger causality in risk between financial markets may be
caused by comovements in conditional skewness or in conditional
kurtosis. Indeed, skewness and kurtosis are closely related to the
left tail of the innovation distribution, or extremedownside risk. To
investigate Granger causality in risk from higher order conditional
moments, we generate data using Hansen’s (1994) autoregressive
conditional density model, which is embedded in (6.1) with the
innovations {εlt} following a generalized Student-t-distribution
with time-varying shape parameters. More specifically, Hansen’s
(1994) generalized t density is given by

gε(ε|λ, η) =



bc

[
1+

1
η − 2

(
bξ + a
1− λ

)2]−(η+1)/2
if ε < −a/b,

bc

[
1+

1
η − 2

(
bξ + a
1+ λ

)2]−(η+1)/2
if ε ≥ −a/b,

where

a ≡ 4λc
η − 2
η − 1

, b2 ≡ 1+ 3λ2 − a2,

c ≡
Γ ((η + 1)/2)
√
π(η − 2)Γ (η/2)

.

Here, λ measures skewness and η is the degree of freedom
parameter. They characterize asymmetry and fat-tailedness of εlt
respectively. This density is well-defined for −1 < λ < 1 and
2 < η < ∞ and encompasses a variety of popular densities. For
instance, if λ = 0, the generalized Student-t-distribution reduces
to the standard Student-t-distribution. If in addition η = ∞, it
further reduces to a normal density. We specify that {εlt} follows a
generalized Student-t-distribution with time-varying parameters
(λlt , ηlt), where the dynamics of λlt and ηlt follow the specification
of Jondeau and Rockinger (2003):
λlt =

1− exp(λ̃it)

1+ exp(λ̃it)
,

ηlt = 4+
4

1+ exp(η̃it)
,

where{
λ̃lt = δl0 + δl1u1t−1 + δl2u2t−1 + δl3λ̃1t−1 + δl4λ̃2t−1,
η̃lt = τl0 + τl1u1t−1 + τl2u2t−1 + τl3η̃1t−1 + τl4η̃2t−1.

We use the following parameter combinations:
ALTER3 [Granger Causalities in Risk from Skewness and Kurtosis]:
(β11, β12, γ10, γ11, γ12, γ13) = (0.3, 0, 0.1, 0.5, 0.2, 0),
(β21, β22, γ20, γ21, γ22, γ23) = (0, 0.5, 0.1, 0.6, 0, 0.2),
(δ10, δ11, δ12δ13δ14, τ10, τ11, τ12, τ13, τ14)
= (−0.2, 1,−5, 0,−0.9,−0.2, 1,−5, 0,−0.9),

(δ20, δ21, δ22δ23δ24, τ20, τ21, τ22, τ23, τ24)
= (−0.2, 0, 1, 0, 0,−0.2, 0, 1, 0, 0).

Under ALTER3, there exists no Granger causality in mean nor in
variance, but there exists Granger causality in risk, due to the
causality in skewness and in kurtosis from Y2t to Y1t with respect
to It−1. To our knowledge, the financial econometric literature has
been focusing on spillover in mean and in variance; no study on
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Table 1
Size at the 10% and 5% significant levels.

M 5 10 15 20 25 30
T 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q 101DAN 500 9.7 6.9 10.5 6.4 11.6 7.2 12.3 6.6 11.3 6.9 12.2 6.9
1000 9.6 6.7 10.4 6.5 10.8 6.5 10.9 6.1 10.6 5.8 10.2 5.6
2000 9.6 6.7 10.3 6.3 10.1 6.8 10.9 6.9 10.5 7.0 11.6 7.3

Q 51DAN 500 9.4 6.8 10.2 7.3 10.2 7.0 10.2 6.4 10.2 7.0 10.3 7.1
1000 7.5 6.4 10.2 6.9 11.6 7.7 11.7 7.2 11.5 6.9 11.5 7.3
2000 8.6 5.8 10.3 7.0 9.9 7.2 11.0 7.7 11.1 7.2 11.1 6.8

Q 101TRUN 500 12.2 7.1 10.5 6.5 11.3 6.5 9.8 6.0 10.0 6.4 10.9 7.1
1000 10.5 7.1 12.3 7.4 11.9 7.3 11.4 6.7 11.3 6.0 11.6 6.1
2000 11.1 6.7 10.0 6.5 10.7 6.8 12 6.5 12.0 5.7 11.4 5.7

Q 51TRUN 500 11.5 7.6 12.4 7.9 12.2 8.4 11.8 8.3 12.7 8.5 11.7 7.4
1000 9.2 6.6 11.1 6.9 12.1 7.6 11.0 6.7 11.6 7.8 11.3 6.8
2000 10.3 6.4 9.9 6.8 10.7 7.5 10.5 6.3 10.9 6.4 10.3 5.9

Q 101REG 500 11.5 7.3 10.8 7.3 10.7 5.7 10.8 5.3 10.2 5.7 11.6 6.7
1000 11.2 6.9 11.8 7.2 11.7 6.4 11.3 6.7 11.2 6.1 9.9 5.8
2000 10.0 7.0 10.5 6.9 8.8 5.3 8.0 4.4 8.3 4.8 9.7 5.0

Q 51REG 500 11.3 7.6 11.3 7.3 10.0 6.4 9.3 6.6 10.4 7.0 10.4 6.6
1000 11.1 7.4 11.0 7.8 11.5 6.8 10.2 5.6 10.0 5.9 9.9 5.9
2000 9.6 6.3 10.4 7.0 10.5 6.2 9.5 5.3 8.9 4.3 9.1 5.3

NULL: Yit = 0.5Yit−1 + uit , uit =
√
hitεit , hit = 0.1+ 0.6hit−1 + 0.2u2it−1, εit ∼ m.d.s. N(0, 1), i = 1, 2; the sample size T = 500, 1000 and 2000; Q

10
1DAN,Q

10
1TRUN,Q

10
1REG and

Q 51DAN,Q
5
1TRUN,Q

5
1REG represent one-way tests for Granger causality in risk from Y2t to Y1t at the 10% and 5% risk levels respectively, where the subscripts DAN, TRUN and REG

denote the Daniell kernel, the truncated kernel, and the regression-based tests.
spillover in skewness and kurtosis was not previously available in
the literature.
For all data generating processes, we consider three sample

sizes: T = 500, 1000, 2000, which correspond to two to
eight years of daily financial data. These sample sizes may be
still relatively small in view of estimating parameters involved
in conditional variance and higher order conditional moments
(skewness and kurtosis). For each T , we first generate T + 500
observations using the GAUSS Window Version random number
generator on a personal computer and then discard the first
500 to reduce the possible effect of the chosen starting values
(h∗l0, λ̃

∗

l0, η̃
∗

l0) = (1/(1 − γ21 − γ23),−0.2, 4.1). We choose
two shortfall probabilities or risk levels: α = 10% and 5%. To
compute our test statistics, we use the Daniell kernel k(z) =
sinπz/πz, z ∈ (−∞,∞), which enjoys some optimal power
property (see Section 4).6 For comparison, we also consider the
truncated kernel-based test Q1TRUN(M) in (3.7) and the Granger-
type regression test (1969) Q1REG(M) in (3.11). To examine the
impact of the choice of the lag order M , we consider M =

5, 10, 15, 20, 25 and 30, which covers a rather wide range of lag
orders for the sample sizes considered here. For data generated
from each of the DGPs 1–4, we use the Quasi-MLE to estimate the
unknown parameters in each individual null model:
Ylt = βl1Ylt−1 + ult , l = 1, 2,
ult = σltεlt ,
σ 2lt = γl0 + γl1σ

2
lt−1 + γl2u

2
lt−1,

εlt ∼ i.i.d. N(0, 1).

(6.2)

The BHHH algorithm is used. This delivers
√
T -consistent esti-

mators under NULL (Bollerslev and Wooldridge, 1992; Lee and
Hansen, 1994; Lumsdaine, 1996)).
Table 1 reports the rejection rates of the Q1DAN(M) in (3.7) with

Daniell kernel, Q1TRUN(M) in (3.9) and Q1REG(M) tests in (3.11)
at the 10% and 5% significance levels under NULL.7 Overall, the

6 Wehave also considered the Bartlett kernel,which is outside the class of kernels
overwhich theDaniell kernel has the optimal power; the results are similar to those
based on the Daniell kernel.
7 We emphasize that the significance level of the tests is different from the risk
level or shortfall probability level in the definition of Granger causality in risk.
Q1DAN(M) test, which is based on the Daniell kernel, has reasonable
sizes for all three sample sizes. It tends to overreject a little at
the 5% significance level, but not excessively. For each shortfall
probability (α = 10% or 5%) and each sample size T , the choice of
M has little impact on the size of the Q1DAN(M) test. The truncated
kernel-based test Q1TRUN(M) performs similarly to Q1DAN(M) at the
10% significant level. The regression procedure Q1REG(M), on the
contrary, tends to a bit overreject the null hypothesis at the 10%
significant level. Both Q1TRUN(M) and Q1REG(M) have better sizes at
the 5% significant level.
Table 2 reports the power of the tests under ALTER1, where

there exists Granger causality in mean from Y2t to Y1t with respect
to It−1. The Q1DAN(M) test has good power against ALTER1 and
it becomes more powerful as T increases. Given each sample
size T ; the power of Q1DAN(M) declines as the lag order M
increases, but not dramatically (which is apparently due to the
downward weighting of k2(·)). The Q1DAN(M) test with the 10%
shortfall probability (or risk level) is more powerful than the
Q1DAN(M) test with the 5% shortfall probability (or risk level). This
is possibly because spillover inmean occurs in themain body of the
distribution. On the other hand, Q1TRUN(M) and Q1REG(M) perform
similarly, and both have relatively low power. Furthermore, a
larger M gives substantially smaller power. For example, at the
5% risk level, the rejection rates of Q1TRUN(M) decrease from 70.8%
and 72.1% to 38.2% and 37.0% respectively even when T = 2000.
These results confirm our expectation that nonuniform weighting
alleviates the impact of choosing too large aM because nonuniform
weighting discounts higher order lags.
Table 3 reports the power of the tests under ALTER2, where

there exists Granger causality in variance from Y2t to Y1t with
respect to It−1. The Q1DAN(M) test has good power against ALTER2.
As under ALTER1, the power of Q1DAN(M) declines as M increases,
but not dramatically. Again, Q1TRUN(M) and Q1REG(M) perform
similarly and theyhave relatively lowpower. In contrast toALTER1,
all tests have better power at the 5% risk level than at the 10%
risk level under ALTER2. This is perhaps because under ALTER2,
spillover in variance occurs mainly in the tails rather than the
centers of the conditional distributions.
Table 4 reports the power of the tests under ALTER3, where

there exists Granger causality in skewness and kurtosis from Y2t
to Y1t with respect to It−1. As expected, the Q1DAN(M) test has
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Table 2
Power at the 10% and 5% significant levels under ALTER1.

M 5 10 15 20 25 30
T 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q 101DAN 500 58.0 52.1 52.6 47.8 50.2 44.2 47.5 40.6 44.7 37.6 43.2 35.7
1000 80.2 76.0 74.9 69.2 70.5 63.5 66.8 58.8 63.1 54.5 60.0 51.3
2000 96.3 94.6 94.4 92.8 92.7 89.9 90.7 87.3 88.5 84.0 86.6 82.2

Q 51DAN 500 43.5 38.6 41.2 35.4 39.5 32.8 37.7 30.3 35.6 27.6 33.3 25.7
1000 56.9 52.7 54.5 48.4 51.7 44.7 48.2 41.6 46.1 38.6 45.0 36.1
2000 77.9 73.7 75.0 69.0 70.1 64.1 67.7 60.3 64.9 57.7 61.8 53.9

Q 101TRUN 500 48.6 42.4 41.6 33.8 37.5 28.2 33.7 25.2 32.6 23.2 30.9 21.9
1000 69.7 62.6 58.5 51.5 52.4 43.9 49.0 39.1 46.7 35.1 41.9 31.0
2000 92.3 89.8 86.6 81.7 81.8 75.1 77.2 70.8 75.7 67.2 73.1 63.9

Q 51TRUN 500 38.7 33.0 34.4 25.2 28.5 22.2 25.5 18.4 23.8 18.8 23.7 17.1
1000 50.9 44.7 43.5 35.0 38.9 31.2 35.8 28.9 35.6 25.7 32.4 24.5
2000 70.8 63.2 60.4 54.7 55.0 46.9 52.4 42.3 48.7 39.5 46.9 38.2

Q 101REG 500 48.1 37.5 40.8 31.7 34.7 27.3 30.9 24.0 27.7 21.9 27.2 21.5
1000 72.8 65.9 62.7 53.7 55.2 46.1 49.7 40.0 44.4 34.9 41.6 32.8
2000 93.2 90.8 87.1 81.3 82.1 75.7 77.7 69.8 73.1 65.2 69.5 59.8

Q 51REG 500 42.6 31.4 32.1 25.2 27.3 21.0 22.6 17.0 19.8 16.2 18.3 14.6
1000 49.6 43.4 43.7 36.3 37.5 30.4 34.5 27.2 32.2 24.1 30.0 22.7
2000 72.1 65.4 61.9 55.5 55.4 47.5 50.8 42.3 48.5 39.9 46.9 37.0

ALTER1: Y1t = 0.5Y1t−1 + 0.2Y2t−1 + u1t , Y2t = 0.5Y2t−1 + u2t , uit =
√
hitεit , hit = 0.1 + 0.6hit−1 + 0.2u2it−1, εit ∼ m.d.s. N(0, 1), i = 1, 2; the sample size T = 500,

1000 and 2000; Q 101DAN,Q
10
1TRUN,Q

10
1REG and Q

5
1DAN,Q

5
1TRUN,Q

5
1REG represent one-way tests for Granger causality in risk from Y2t to Y1t at the 10% and 5% risk levels respectively,

where the subscripts DAN, TRUN and REG denote the Daniell kernel, the truncated kernel, and the regression-based tests.
Table 3
Power at the 10% and 5% significant levels under ALTER2.

M 5 10 15 20 25 30
T 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q 101DAN 500 42.8 36.9 43.1 36.4 40.1 33.4 38.3 30.3 35.5 27.7 33.4 26.1
1000 59.3 53.5 59.9 52.9 56.5 49.0 52.3 44.4 47.9 41.7 46.2 40.0
2000 86.6 83.0 84.8 80.4 82.4 77.3 79.3 73.6 76.6 71.5 74.7 68.4

Q 51DAN 500 51.4 46.0 53.3 46.9 52.0 45.1 48.6 42.0 46.3 38.0 44.4 35.9
1000 67.2 62.2 65.6 59.4 62.2 56.3 59.9 52.8 57.3 50.3 55.3 48.2
2000 84.5 85.4 82.2 83.5 80.6 80.2 78.3 77.3 75.9 74.0 73.7 72.0

Q 101TRUN 500 39.8 33.0 33.8 25.0 30.2 22.6 27.2 19.0 22.9 16.5 23.6 16.9
1000 55.3 47.8 47.1 38.2 42.5 32.6 37.3 27.5 34.7 25.5 32.0 23.4
2000 81.4 76.2 75.5 68.2 68.4 60.5 64.2 53.5 59.3 48.5 55.5 43.6

Q 51TRUN 500 50.3 44.5 44.7 36.3 38.9 30.5 34.5 26.9 32.4 26.6 33.2 25.1
1000 62.4 56.3 55.1 48.5 49.7 42.3 46.8 37.0 43.8 34.7 41.5 32.0
2000 85.0 80.2 77.0 71.7 72.3 66.0 68.6 60.0 64.6 55.9 60.8 51.9

Q 101REG 500 40.0 33.5 33.3 25.2 28.7 20.5 24.4 16.6 20.7 14.3 20.6 13.7
1000 57.4 50.8 50.6 42.1 42.7 33.8 37.9 28.5 34.7 27.1 32.3 24.5
2000 82.7 77.3 73.6 67.0 67.1 57.2 60.3 50.2 55.7 44.6 52.2 40.8

Q 51REG 500 50.1 44.3 42.9 34.1 37.0 29.4 32.2 24.4 30.5 24.0 29.8 22.5
1000 60.9 55.7 57.6 48.8 50.5 42.9 47.0 38.3 44.4 33.8 41.0 31.7
2000 84.7 80.1 76.3 70.7 72.4 65.8 69.0 60.8 64.1 56.7 60.8 53.5

ALTER2: Yit = 0.5Yit−1 + uit , uit =
√
hitεit , , εit ∼ m.d.s. N(0, 1), i = 1, 2, h1t = 0.1+ 0.5h1t−1 + 0.2u21t−1 + 0.7u

2
2t−1, h2t = 0.1+ 0.5h2t−1 + 0.2u

2
2t−1; the sample size

T = 500, 1000 and 2000; Q 101DAN,Q
10
1TRUN,Q

10
1REG and Q

5
1DAN,Q

5
1TRUN,Q

5
1REG represent one-way tests for Granger causality in risk from Y2t to Y1t at the 10% and 5% risk levels

respectively, where the subscripts DAN, TRUN and REG denote the Daniell kernel, the truncated kernel, and the regression-based tests.
good power against ALTER3. All power patterns are similar to
those under ALTER1, where there exists Granger causality inmean.
Furthermore, as under ALTER1, the Q1DAN(M) test with the 10%
shortfall probability is more powerful than the Q1DAN(M) test with
the 5% shortfall probability. With M = 5 and T = 2000, for
example, the rejection rates of Q1DAN(M) at the 5% significance
level are 86.5% and 39.5% for the 10% and 5% shortfall probabilities
respectively. Again this may be due to the possibility that spillover
mainly comes from skewness which occurs in the main body of
the distribution. All power patterns ofQ1TRUN(M) andQ1REG(M) are
similar to those of Q1TRUN(M) and Q1REG(M) under ALTER1.
To better capture the empirical distribution of returns, it is

often proposed in the existing literature to add jumps to return
and volatility process (see, e.g., Hong et al. (2007) and Maheu and
McCurdy (2004)). To investigate the power of our proposed test on
detecting the risk spillover based on jump processes, we further
consider the Poisson jump model following Hong et al. (2007):

Ylt = βl1Y1t−1 + βl2Y2t−1 + ult +
nlt∑
1

vlt , l = 1, 2,

ult = σltεlt ,
σ 2lt = γl0 + γl1σ

2
lt−1 + γl2u

2
1t−1 + γl3u

2
2t−1,

εlt ∼ m.d.s. (0, 1),

vlt ∼ i.i.d. N(0, δ2l ), nlt ∼ Poisson(λl).
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Table 4
Power at the 10% and 5% significant levels under ALTER3.

M 5 10 15 20 25 30
T 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q 101DAN 500 47.5 41.1 43.0 36.6 39.4 32.3 36.9 30.2 35.7 27.3 34.3 25.7
1000 67.0 62.1 60.7 53.8 54.8 47.8 50.8 43.7 48.0 40.1 44.9 37.1
2000 88.8 86.5 84.7 81.6 82.1 76.5 77.8 71.9 74.9 68.1 71.5 64.7

Q 51DAN 500 25.8 22.9 25.4 21.9 25.7 20.6 24.5 19.6 24.2 18.2 22.6 17.5
1000 31.5 26.9 28.7 23.8 27.1 21.2 25.4 19.4 24.5 18.2 23.3 17.4
2000 45.7 39.5 40.0 33.8 35.1 29.1 32.6 25.8 31.1 22.6 29.9 21.7

Q 101TRUN 500 38.5 30.9 32.6 26.3 29.7 22.0 28.4 19.9 26.9 17.7 25.0 16.8
1000 55.6 46.9 44.4 36.6 38.3 31.4 36.7 28.4 34.1 24.4 33.4 23.3
2000 81.3 76.1 72.0 64.3 65.4 55.6 58.7 49.6 55.5 46.0 52.7 43.0

Q 51TRUN 500 24.7 20.7 23.3 17.8 20.5 15.7 19.0 14.7 19.3 14.5 19.6 14.2
1000 26.3 20.2 21.9 16.7 19.8 14.9 20.2 14.0 19.9 13.7 18.9 12.8
2000 35.6 29.4 28.6 22.3 24.9 18.2 23.6 16.0 22.6 16.0 20.6 13.9

Q 101REG 500 38.0 30.9 32.8 25.8 27.6 20.8 25.8 17.2 23.6 16.3 23.1 14.8
1000 57.0 29.1 48.2 22.9 44.5 22.6 40.9 20.9 39.3 20.8 36.8 19.0
2000 80.4 75.4 71.7 65.3 65.8 56.5 62.0 53.2 59.0 48.1 54.8 44.1

Q 51REG 500 23.7 19.8 22.6 17.2 21.3 15.7 18.0 12.5 17.5 13.1 17.9 13.2
1000 50.1 23.0 40.3 16.9 35.4 16.1 31.3 14.6 29.1 14.3 25.4 13.8
2000 35.7 28.7 29.1 22.3 27.7 21.3 25.6 18.9 24.4 16.8 22.5 15.8

ALTER3: Yit = 0.3Yit−1 + uit , i = 1, 2, uit =
√
hitεit , hit = 0.1+ 0.5hit−1 + 0.2u2it−1, εit ∼ GT (εt |λt , ηt ), λit = (1− exp(λ̃it ))/(1+ exp(λ̃it )), ηit = 4/(1+ exp(η̃it ))+ 4,

where λ̃1t = −0.2 + ε1t−1 − 5ε2t−1 − 0.9λ̃2t−1, λ̃2t = −0.2 + ε2t−1, η̃1t = −0.2 + ε1t−1 − 5ε2t−1 − 0.9η̃2t−1, η̃2t = −0.2 + ε2t−1; the sample size T = 500, 1000 and
2000; Q 101DAN,Q

10
1TRUN,Q

10
1REG and Q

5
1DAN,Q

5
1TRUN,Q

5
1REG represent one-way tests for Granger causality in risk from Y2t to Y1t at the 10% and 5% risk levels respectively, where the

subscripts DAN, TRUN and REG denote the Daniell kernel, the truncated kernel, and the regression-based tests.
Particularly, we test the alternative of Granger Causality in Risk
from Mean, however with jump added to the process8:
(β11, β12, γ10, γ11, γ12, γ13, δ1, λ1)
= (0.5, 0.2, 0.1, 0.6, 0.2, 0, 1, 0.2),

(β21, β22, γ20, γ21, γ22, γ23, δ2, λ2)
= (0, 0.5, 0.1, 0.6, 0, 0.2, 1, 0.2).

We find that theQ1DAN(M) test still has good power and it becomes
more powerful as T increases. For 10% risk level, Q1DAN(5) is 51.3%,
72.7% and 92.9% when M = 500, 1000 and 2000 respectively.
And for the 5% risk level, the Q1DAN(5) test increases from 45.2%
to 91.1%.9
In summary, the proposed tests with the Daniell kernel have

reasonable size andpower against a variety of empirically plausible
alternatives in finite samples. The truncated kernel-based test
Q1TRUN(M) and the Granger-type regression procedure Q1REG(M)
also have reasonable sizes for all sample sizes. However, for
the alternatives under study, they often yield lower power than
nonuniform weighting, especially for a larger lag order M . In
contrast, the use of nonuniform weighting makes the power
relatively robust to the choice ofM . This suggests that our test with
nonuniformweighting is a useful tool in investigating extreme risk
spillover across financial markets.

7. Application to exchange rates

To illustrate our procedures, we now apply them to foreign
exchange rates. The foreign exchange market is one of the most
important financial markets in the world, where trading takes
place 24 h a day around the globe and trillions of dollars of different
currencies are transacted each day. Understanding themechanism
of risk spillover between exchange rates is important for many

8 We are grateful to an anonymous referee for very helpful suggestions on
investigating our proposed test on detecting the risk spillover due to jump
processes.
9 The Q1DAN(M) results for M = 10, 15, 20, 25 and 30, are available from the
authors upon request.
outstanding issues in international economics and finance. The
previous literature has focused on volatility spillover (e.g., Baillie
and Bollerslev (1989, 1990)), Engle et al. (1990), Cheung and Ng
(1996) and Hong (2001)). Nevertheless, extreme downside risk
spillover is important becausemarket participants are increasingly
concerned with their exposure to large exchange rate fluctuations,
and financial regulators are keen to measure the exchange rate
risk exposures of the financial institutions they supervise. In this
section, we use our tests to investigate intraday extreme downside
risk spillover between two foreign exchange rates—Euro/Dollar
and Yen/Dollar, which are among most active currencies traded in
the foreign exchange market.
The data, obtained from Olsen & Associates, are indicative bid

and ask quotes posted by banks from July 1, 2000 to September
8, 2000, with a total of 10 weeks. We choose the starting time
from July 1, 2000 to wait for the market to stabilize after the
introduction of Euro as a new currency in January 1, 1999. Similarly
to Diebold et al. (1999), we sample data over a grid of half-hour
intervals, i.e., we obtain the quotes nearest the half-hour time
stamps. Although foreign exchange trading occurs around the clock
during weekdays, trading is very thin during weekends. Following
Diebold et al. (1999), we eliminate the observations from Friday
21:30 GMT to Sunday 21:00 GMT, and consequently get a total
of 2400 observations. Exchange rate changes are calculated in the
same way as in Anderson et al. (2000) and Diebold et al. (1999).
We first calculate the average log bid and log ask prices to get a
‘‘log price’’, then calculate changes as the differences between log
prices at consecutive time points. The intraday calendar effects are
also removed following Diebold et al. (1999).10

It has been well argued that the mechanism governing the
behavior of the tails may be different from that of the rest of the
distribution (e.g., Chernozhukov and Umantsev (2001), Danielsson
and de Vries (2000) and Engle and Manganelli (2004)). Thus,
instead of attempting to model the whole distribution, we use

10 Unlike Diebold et al. (1999), we further add a Monday dummy variable to
account for the possible weekend effect on the data.
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Table 5
Estimate and relevant statistics for asymmetric slope CAViaR specification.

Parameter 1% VaR 5% VaR
Euro/Dollar Yen/Dollar Euro/Dollar Yen/Dollar

θ0 0.015 [0.032] 2.215 [0.788] 0.639 [0.646] 0.842 [0.865]
θ1 0.984 [0.011] 0.588 [0.122] 0.741 [0.217] 0.766 [0.245]
θ2 −0.053 [0.037] 0.029 [0.257] 0.066 [0.067] −0.008 [0.074]
θ3 0.157 [0.086] 0.872 [0.295] 0.178 [0.063] 0.108 [0.127]
Sample size 2390 2390 2390 2390
Diagnostic DQ test statistics
(p-values) 0.597 0.542 0.994 0.506

The specified asymmetric slope VaR model for Euro/Dollar and Japanese Yen/Dollar Ylt is: Vlt = θ0 + θ1Vlt−1 + θ2Y+lt−1 + θ3Y
−

lt−1, where l = 1, 2, Y
+

lt = max(Ylt , 0), Y
−

lt =

−min(Ylt , 0). The numbers in the square brackets are the standard deviation for the estimated parameters. Engle andManganelli’s DQ test are applied to check the adequacy
of the specified VaR model, where the first four lagged hits are used as instruments.
Engle andManganelli’s (2004) Conditional Autoregressive Value at
Risk (CAViaR) model for our VaR calculation:

Vlt(θ) = θl0 +
q∑
j=1

θljVlt−j(θ)+
r∑
j=1

θl(q+j)L(Ylt−j), l = 1, 2.

The autoregressive components {θljVlt−j} ensure that VaR changes
slowly over time. The rationale is to capture volatility clustering
which is typical of financial time series. The function L(·) depends
on a finite number of lagged values of observable variables that
belong to the information set available at time t − 1. It provides
a link between these predetermined variables and VaR. CAViaR
models can be used for scenarios with constant volatilities but
time-varying error distributions, or scenarios with both time-
varying error densities and volatilities. They are thus more general
than those GARCH models. See Engle and Manganelli (2004) for
more discussion.
Specifically, we use Engle and Manganelli’s (2004) asymmetric

slope model for the VaRs of Euro/Dollar and Yen/Dollar11:

Vlt(θl) = θl0 + θl1Vlt−1 + θl2Y+lt−1 + θl3Y
−

lt−1, l = 1, 2,

where Y+lt = max(Ylt , 0), Y
−

lt = −min(Ylt , 0). The asymmetric
slope quantile specification is correctly specified if an exchange
rate change series follows a GARCHmodel inwhich the conditional
standard deviation, rather than the conditional variance, is
modelled asymmetrically with i.i.d. innovations. The unknown
parameters are estimated using Engle and Manganelli’s (2004)
method, which is based on the regression quantile loss function,
first introduced by Koenker and Bassett (1978). We also use Engle
and Manganelli’s (2004) dynamic quantile (DQ) test to check the
adequacy of the estimated CAViaR models. For all subsequent
discussions, we use the 5% significance level as the cutoff level.
Table 5 presents the parameter estimates and their standard

deviations, as well as the p-values of the DQ test statistics. We find
that the autoregressive coefficient (θl1) estimates are significant
for both exchange rate change series, confirming the clustering
of the tail of the exchange rate change distribution. The p-values
of the DQ test statistics are 0.597, 0.542, 0.994 and 0.506 for
Euro/Dollar andYen/Dollar at the 1% and5% risk levels respectively,
all well above the 5% significance level. These results suggest the
adequacy of the estimated asymmetric slopemodel for the VaRs of
Euro/Dollar and Yen/Dollar.
We now consider extreme risk spillover between Euro/Dollar

and Yen/Dollar. Table 6 reports our test statistics and the Granger-
type regression test statistics at the 1% and 5% risk levels, together
with their p-values. As in the simulation study, we use the Daniell
kernel and the truncated kernel for our test. To identify the
direction of risk spillover, here we consider two directional tests

11 Several other CAViaR models are also considered. The asymmetric slope model
is found to be adequate and has the best performance in most cases.
for one-way Granger causality in risk. The one-way test Q1DAN(M)
in (3.7) with Daniell kernel, which checks risk causality from
Yen/Dollar to Euro/Dollar, yields statistic values of 3.394, 2.909,
1.342, 0.478 and−0.063 forM = 5, 10, 20, 30 and 40 respectively
at the 1% risk level. It is significant only for M = 5 and 10, with
p-values below 5%, suggesting that there may only exist weak
extreme risk spillover from Yen/Dollar to Euro/Dollar. At the 5%
risk level,Q1DAN yields p-valueswell above 10% for allM , suggesting
that there is no risk spillover from past Yen/Dollar to Euro/Dollar.
In contrast, at both the 1% and 5% risk levels, the p-values of
the one-way test Q−1DAN, which checks causality from Euro/Dollar
to Yen/Dollar, are well below the 5% significance level for all
M , suggesting significant extreme risk spillover from Euro/Dollar
to Yen/Dollar. A further comparison reveals that one-way risk
spillover is stronger at the 1% risk level than at the 5% risk level,
because both Q1DAN(M) and Q−1DAN(M) give larger statistic values
at the 1% risk level than at the 5% risk level for each M . This is
consistent with most of the empirical findings in the literature
that the codependency may be stronger in larger downside
market movements between financial markets. We note that the
Granger-type regression tests Q1REG(M) and Q−1REG(M) and the
truncated kernel-based tests Q1TRUN(M) and Q−1TRUN(M) deliver
similar conclusions to Q1DAN(M) and Q−1DAN(M), but with weaker
evidence, particularly for largerM . Their statistic values are much
smaller than those of Q1DAN(M) and Q−1DAN(M). Furthermore, at
the 1% risk level, Q1TRUN(M) is significant only for M = 5. It
becomes insignificant for larger M , with p-values well above 10%.
And at the 5% risk level, Q−1REG(M) is significant only for M = 5
and 10.
To sum up, we find that large price falls of Euro/Dollar

always have a significant predictive power for large price falls of
Yen/Dollar. However, risk causality from Yen/Dollar to Euro/Dollar
is only significant at the 1% risk level, not at the 5% risk level.
For both exchange rate changes series, the risk spillover is much
stronger at the 1% risk level than at the 5% risk level, which is
consistent with most of the empirical findings in the literature
that the degree of correlation between financial assets or markets
often becomes stronger in large downside market movements
(e.g., Longin and Solnik (2001)). Finally, nonuniform weighting
is more powerful than uniform weighting and the Granger-type
regression-based test in detecting risk spillover between exchange
rates. This highlights the practical merit of the proposed tests.

8. Conclusion

Based on a new concept of Granger causality in risk which
focuses on the comovements between the tails of the two
distributions, a class of kernel-based tests are proposed to test
whether a large downside risk in one market will Granger-cause
a large downside risk in another market. The proposed tests check
a large number of lags but avoid suffering from severe loss of power
due to the loss of a large number of degrees of freedom, thanks to
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Table 6
Risk spillover between Euro/Dollar and Yen/Dollar.

1% VaR 5% VaR
M 5 10 20 30 40 5 10 20 30 40

Eur⇐Yen Q1DAN 3.394 2.909 1.342 0.478 −0.063 −0.313 −0.465 −0.880 −1.128 −1.229
(p-values) 0.000 0.002 0.090 0.316 0.525 0.623 0.679 0.811 0.870 0.890
Eur⇒Yen Q−1DAN 16.083 11.156 7.506 5.890 4.873 4.570 3.069 2.450 1.983 1.715
(p-values) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.024 0.043
Eur⇐Yen Q1TRUN 2.495 0.950 −0.475 −1.094 −1.342 −0.455 −0.856 −1.566 −0.515 −0.967
(p-values) 0.006 0.171 0.683 0.863 0.910 0.675 0.804 0.941 0.697 0.833
Eur⇒Yen Q−1TRUN 8.621 5.703 3.775 2.865 1.862 2.319 2.380 1.469 1.045 1.260
(p-values) 0.000 0.000 0.000 0.002 0.031 0.010 0.009 0.071 0.148 0.104
Eur⇐Yen Q1REG 2.487 0.906 −0.461 −0.934 −1.120 −0.459 −0.825 −1.561 −0.696 −1.288
(p-values) 0.006 0.182 0.678 0.825 0.869 0.677 0.795 0.941 0.757 0.901
Eur⇒Yen Q−1REG 8.393 5.439 3.614 0.765 −0.037 2.347 2.476 1.517 0.981 1.544
(p-values) 0.000 0.000 0.000 0.222 0.515 0.009 0.007 0.065 0.163 0.061

‘‘⇐’’ and ‘‘⇒’’ represent one-way causality in risk from the latter to the former and the former to the latter with respect to It−1 respectively. Q1DAN,Q1TRUN,Q1REG
and Q−1DAN,Q−1TRUN,Q−1REG represent one-way tests for Granger causality in risk from Japanese Yen/Dollar to Euro/Dollar and from Euro/Dollar to Japanese Yen/Dollar
respectively, where the subscripts DAN, TRUN and REG denote the Daniell kernel, the truncated kernel, and the regression-based tests.
the use of a downward weighting kernel function. This downward
weighting is consistent with the stylized fact that today’s financial
markets aremore influenced bymore recent events than by remote
past events, thus enhancing the power of the proposed tests. This is
expected to give goodpower against the alternativeswith decaying
cross-correlations as the lag order increases. Indeed, nonuniform
weighting often delivers better power than uniform weighting, as
is illustrated in a simulation study and an application to exchange
rates. A Granger-type regression-based test (1969) is equivalent to
the uniform-weighting-based test. Simulation studies show that
the procedures have reasonable size and good power against a
number of empirically plausible alternatives in finite samples,
no matter whether risk spillover arises from spillover in mean,
in variance, or in skewness and kurtosis. These procedures are
therefore useful for investigating the comovements between large
market changes such as financial contagions. We use the new tests
to investigate intraday risk spillover causality between Euro/Dollar
and Yen/Dollar. It is found that a past large downside movement
of Euro Granger-causes a future large price fall of Japanese Yen,
and the evidence is stronger for larger changes. On the other hand,
only an extremely large past downside movement of Japanese Yen
Granger-causes a future large price fall of Euro in risk.
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Appendix. Mathematical proof

Proof of Theorem 1. Let f̃ (ω) and f̃ 01 (ω) be defined in the same
way as f̂ (ω) and f̂ 01 (ω) in (3.4) and (3.5) with θ̂ ≡ (θ̂1, θ̂2)

′ replaced
by θ0 ≡ (θ01 , θ

0
2 )
′. Given D1T (M) = M

∫
∞

0 k
4(z)dz[1 + o(1)] as

M →∞ under Assumption 6, it suffices to showTheoremsA.1 and
A.2 under the conditions of Theorem 1. Theorem A.1 implies that
parameter estimation uncertainty in θ̂ has no impact on the limit
distribution of Q1(M). The main technical challenge for the proof
of Theorem A.1 is that the risk indicator Zlt(θl) ≡ 1(Ylt < −Vlt) is
not differentiable with respect to parameter θl.
Theorem A.1. M−
1
2 T [L2(f̂ , f̂ 01 ) − L

2(f̃ , f̃ 01 )]→
p 0, where L2(·) is

defined as in (3.6).

Theorem A.2. [TL2(f̃ , f̃ 01 )− C1T (M)]/[2D1T (M)]
1
2 →

d N(0, 1).

Proof of Theorem A.1. Throughout, let C̃(j) be defined as Ĉ(j)
in (3.3) with θ̂ replaced by θ0. We further replace the sample
proportions α̂l and α̃l in Ĉ(j) and C̃(j) with α. Such a replacement
does not affect the asymptotic distribution of Q1(M). Putting σ 2 ≡
α(1− α), we have

T
[
L2(f̂ , f̂ 01 )− L

2(f̃ , f̃ 01 )
]
= σ−4T

T−1∑
j=1

k2(j/M)
[
Ĉ(j)− C̃(j)

]2
+ 2σ−4T

T−1∑
j=1

k2(j/M)[Ĉ(j)− C̃(j)]C̃(j)

≡ σ−4T Q̂1 + 2σ−4T Q̂2, say. (A.1)

We shall prove Theorem A.1 by showing Propositions A.1 and
A.2.

Proposition A.1. M−
1
2 T Q̂1→p 0.

Proposition A.2. M−
1
2 T Q̂2→p 0.

Proof of Proposition A.1. By straightforward algebra, we have for
j > 0,

Ĉ(j)− C̃(j) = M̂1(j, θ̂1)+ M̂2(j, θ̂2)+ M̂3(j, θ̂1, θ̂2), (A.2)

where

M̂1(j, θ1) ≡ T−1
T∑

t=j+1

[Z1t(θ1)− Z1t(θ01 )][Z2(t−j)(θ
0
2 )− α],

M̂2(j, θ2) ≡ T−1
T∑

t=j+1

[Z1t(θ01 )− α][Z2(t−j)(θ2)− Z2(t−j)(θ
0
2 )],

M̂3(j, θ1, θ2)

≡ T−1
T∑

t=j+1

[Z1t(θ1)− Z1t(θ01 )][Z2(t−j)(θ2)− Z2(t−j)(θ
0
2 )].

By the definition of Q̂1 in (A.1), we have

Q̂1 ≤ 3
[
Q̂11(θ̂1)+ Q̂12(θ̂2)+ Q̂13(θ̂1, θ̂2)

]
, (A.3)
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where

Q̂11(θ1) ≡
T−1∑
j=1

k2(j/M)M̂21 (j, θ1),

Q̂12(θ2) ≡
T−1∑
j=1

k2(j/M)M̂22 (j, θ2),

Q̂13(θ1, θ2) ≡
T−1∑
j=1

k2(j/M)M̂23 (j, θ1, θ2).

Because the risk indicator Zlt(θl) is not differentiable with respect
to θl, we shall use the uniform convergence argument to show that
Q̂11(θ̂1), Q̂12(θ̂2) and Q̂13(θ̂1, θ̂2) vanish in probability with suitable
rates. Given Assumption 4, we have that for any given constant
ε > 0, there exists ∆0 ≡ ∆0(ε) < ∞ such that P(|θ̂l − θ0l | >
∆0T−

1
2 ) < ε for T sufficiently large. Hence, it suffices to show

Lemmas A.1–A.3.

Lemma A.1. Put Θ0l ≡ {θl ∈ Θl : |θl − θ
0
l | ≤ ∆0T−

1
2 } for

0 < ∆0 < ∞, l = 1, 2. Then for any given constant ∆0 >

0, supθ1∈Θ01 |T Q̂11(θ1)| = OP(1) and supθ1∈Θ01 |M
−
1
2 T Q̂11(θ1)|→p 0.

Proof of Lemma A.1. This is one of the most involved proofs, due
to the fact that the risk indicator Zlt(θl) is not differentiable with
respect to θl. Recalling Zlt(θl) ≡ 1[Ylt < −Vlt(θl)], we put

Wlt(θl) ≡ Zlt(θl)− Zlt(θ0l )− E[Zlt(θl)|It−1] + E[Zlt(θ
0
l )|It−1]

= Zlt(θl)− Zlt(θ0l )− Flt [−Vlt(θl)] + Flt [−Vlt(θ
0
l )], (A.4)

where Flt(y|It−1) is the conditional CDF of Ylt given It−1. Given each
θl ∈ Θl, we have E[Wlt(θl)|It−1] = 0 a.s., i.e., {Wlt(θl)} is a m.d.s.
with respect to It−1 for each given θl. Noting Zlt(θ0l ) = Zlt ≡ 1(Ylt ≤
−Vlt) a.s. under Assumption 3(i) and recalling the definition of
M̂1(j, θ1) in (A.2), we have for j > 0,

M̂1(j, θ1) = T−1
T∑

t=j+1

[Z1t(θ1)− Z1t(θ01 )][Z2(t−j)(θ
0
2 )− α]

= T−1
T∑

t=j+1

W1t(θ1)[Z2(t−j) − α]

+ T−1
T∑

t=j+1

{F1t [−V1t(θ1)]

− F1t [−V1t(θ01 )]}[Z2(t−j) − α]

≡ M̂11(j, θ1)+ M̂12(j, θ1), say. (A.5)

We first consider M̂12(j, θ1) in (A.5). By a second order Taylor series
expansion, we have

M̂12(j, θ1) = (θ1 − θ01 )
′T−1

T∑
t=j+1

∂F1t [−V1t(θ01 )]
∂θ1

[Z2(t−j) − α]

+
1
2
(θ1 − θ

0
1 )
′T−1

T∑
t=j+1

∂2F1t [−V1t(θ̄1)]
∂θ1∂θ

′

1

×[Z2(t−j) − α](θ̂1 − θ01 )

≡ (θ1 − θ
0
1 )
′M̂121(j, θ1)+

1
2
(θ1 − θ

0
1 )
′M̂122(j, θ̄1)(θ1 − θ01 ),

say, (A.6)
where θ̄1 lies between θ1 and θ01 . Put Γ̃ (j) ≡ T
−1∑T

t=j+1 S1t(θ
0
1 )

[Z2(t−j) − α], where S1t(θ1) is defined in Assumption 5. Then

sup
θ1∈Θ

0
1

T
T−1∑
j=1

k2(j/M)[(θ1 − θ01 )
′M̂121(j, θ1)]2

≤ 2T‖θ1 − θ01 ‖
2
T−1∑
j=1

k2(j/M) ||Γ (j)||2

+ 2T‖θ1 − θ01 ‖
2
T−1∑
j=1

k2(j/M)‖Γ̃ (j)− Γ (j)‖2

= OP(1)+ OP(M/T ), (A.7)

where supθ1∈Θ01 ‖θ1 − θ
0
1 ‖ ≤ ∆0T−

1
2 ,
∑T−1
j=1 k

2(j/M) ||Γ (j)||2 →∑
∞

h=1 ‖Γ (h)‖
2
= O(1) given Assumptions 5(i) and 6, M →

∞,M/T → 0, and
T−1∑
j=1

k2(j/M)‖Γ̃ (j)− Γ (j)‖2 = OP(M/T )

by Markov’s inequality and sup0<j<T E‖Γ̃ (j) − Γ (j)‖2 ≤ ∆T−1.
Note that sup0<j<T E‖Γ̂ (j) − Γ (j)‖2 ≤ ∆T−1 follows from
Assumption 5 (cf. Hannan (1970, p. 209)).
For the second term in (A.6), we have

sup
θ1∈Θ

0
1

T
T−1∑
j=1

k2(j/M)|(θ1 − θ01 )
′M̂122(j, θ1)(θ1 − θ01 )|

2

≤ sup
θ1∈Θ

0
1

‖θ1 − θ
0
1 ‖
4T
T−1∑
j=1

k2(j/M)‖M̂122(j, θ1)‖2 = OP(M/T )

(A.8)

given supθ1∈Θ01 ‖θ1 − θ
0
1 ‖ ≤ ∆0T

−
1
2 , Assumption 2, and Markov’s

inequality. It follows from (A.6)–(A.8),M →∞,M/T → 0 that

sup
θ1∈Θ

0
1

T
T−1∑
j=1

k2(j/M)‖M̂12(j, θ1)‖2 = OP(1). (A.9)

We now consider the first term M̂11(j, θ1) in (A.5). Divide
the cube Θ01 , which is centered at θ

0
1 with size 2∆0T

−
1
2 , into

approximately LT ≡ (2∆0/εT )d1 cubes {Θ+1 (l), l = 1, . . . , LT } of
size εT/T

1
2 ,where εT ≡ M−

1
2 / ln(T )→ 0 and d1 is the dimension

of θ1. For 1 ≤ l ≤ LT , put θ a1t(l) ≡ infθ1∈Θ+1 (l) F1t [−V1t(θ1)]

and θ b1t(l) ≡ supθ1∈Θ+1 (l) F1t [−V1t(θ1)]. Note that θ
a
1t(l) and θ

b
1t(l)

are measurable functions of I1(t−1) because V1t(θ1) is a measurable
function of I1t−1. Then, for any θ1 ∈ Θ+1 (l),we write

M̂11(j, θ1) = T−1
T∑

t=j+1

{Z1t(θ1)− Z1t(θ01 )− F1t [−V1t(θ1)]

+ F1t [−V1t(θ01 )]}Z2(t−j) − αT
−1

T∑
t=j+1

{Z1t(θ1)− Z1t(θ01 )

− F1t [−V1t(θ1)] + F1t [−V1t(θ01 )]}

≤ T−1
T∑
t=1

{Z1t [θ b1t(l)] − Z1t(θ
0
1 )− F1t [−V1t(θ

a
1t(l))]

+ F1t [−V1t(θ01 )]} − T
−1

T∑
t=1

{Z1t [θ a1t(l)]

− Z1t(θ01 )− F1t [−V1t(θ
b
1t(l))] + F1t [−V1t(θ

0
1 )]}
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= T−1
T∑
t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

+ 2T−1
T∑
t=1

{F1t [−V1t(θ b1t(l))] − F1t [−V1t(θ
a
1t(l))]}.

Similarly, we can obtain

M̂11(j, θ1) ≥ −T−1
T∑
t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

− 2T−1
T∑
t=1

{F1t [−V1t(θ b1t(l))] − F1t [−V1t(θ
a
1t(l))]}.

It follows that

max
0<j<T

sup
θ1∈Θ

+

1 (l)

∣∣∣M̂11(j, θ1)∣∣∣ ≤
∣∣∣∣∣T−1 T∑

t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

∣∣∣∣∣
+ 2∆0εTT−

1
2 T−1

T∑
t=1

sup
θ1∈Θ

0
1

∥∥∥∥∂F1t [−V1t(θ1)]∂θ1

∥∥∥∥ (A.10)

given ‖θ b1t(l) − θ
a
1t(l)‖ ≤ ∆0εT/T

1
2 . Note that the second term in

(A.10) does not depend on l.
Therefore, we have

sup
θ1∈Θ

0
1

T
T−1∑
j=1

k2(j/M)
∣∣∣M̂11(j, θ1)∣∣∣2

= max
1≤l≤LT

sup
θ1∈Θ

+

1 (l)
T
T−1∑
j=1

k2(j/M)
∣∣∣M̂11(j, θ1)∣∣∣2

≤ 2 max
1≤l≤LT

T

∣∣∣∣∣T−1 T∑
t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

∣∣∣∣∣
2 T−1∑
j=1

k2(j/M)

+ 4T (∆20ε
2
T/T )

[
T−1

T∑
t=1

sup
θ1∈Θ

0
1

∥∥∥∥∂F1t [−V1t(θ1)]∂θ1

∥∥∥∥
]2

×

T−1∑
j=1

k2(j/M)

= OP(Mε2T ) = oP(1) (A.11)

given εT = M−
1
2 / ln(T ), where we have made use of the fact that

P

 max
1≤l≤LT

T

∣∣∣∣∣T−1 T∑
t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

∣∣∣∣∣
2

> ∆20ε
2
T


≤

LT∑
l=1

P

∣∣∣∣∣T−1 T∑
t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

∣∣∣∣∣
2

> ∆20ε
2
T/T


≤

LT∑
l=1

(∆20ε
2
T/T )

−2E

∣∣∣∣∣T−1 T∑
t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

∣∣∣∣∣
4

≤ (2∆0/εT )d1 (∆20ε
2
T/T )

−2
[
T−2(∆0εT/T

1
2 )2 + T−3(∆0εT/T

1
2 )
]

= O(ε−(d1+2)T /T + ε−(d1+3)T /T
3
2 )→ 0

given M = cT ν, εT = M−
1
2 / ln(T ), ν < 2

d1+2
, where the third

inequality follows from

E

∣∣∣∣∣T−1 T∑
t=1

{W1t [θ b1t(l)] −W1t [θ
a
1t(l)]}

∣∣∣∣∣
4

≤ T−2(∆0εT/T
1
2 )2 + T−3(∆0εT/T

1
2 )

by Rosenthal’s inequality (e.g., Hall and Heyde (1980, p. 23)), the
fact that {W1t [θ b1t(l)] − W1t [θ

a
1t(l)],Ft−1} is a m.d.s. and the fact

that

E|W1t [θ b1t(l)] −W1t [θ
a
1t(l)]|

m
≤ ∆0εT/T

1
2 for anym ≥ 1

by the law of iterated expectation and |θ b1t(l)− θ
a
1t(l)| ≤ ∆0εT/T

1
2 .

Note that a larger m does not imply a faster convergence rate due
to the very nature of the indicator function. The desired result then
follows from (A.5), (A.9) and (A.11). �

Lemma A.2. For any given constant ∆0 > 0, we have supθ2∈Θ02
|T Q̂12(θ2)| = OP(1) and supθ2∈Θ02

∣∣∣M− 12 T Q̂12(θ2)∣∣∣→p 0.

Proof of Lemma A.2. Similar to the proof of Lemma A.1. �

Lemma A.3. Put Θ0 ≡ Θ01 ⊗ Θ02 and θ ≡ (θ1, θ2)
′. Then

for any given constant ∆0 > 0, supθ∈Θ0

∣∣∣T Q̂13(θ1, θ2)∣∣∣→p 0 and

supθ∈Θ0

∣∣∣M− 12 T Q̂13(θ1, θ2)∣∣∣→p 0.

Proof of Lemma A.3. Recalling the definition of M̂3(j, θ1, θ2) as in
(A.2) and Zlt(θ0l ) = Zlt , we write

M̂3(j, θ1, θ2) = T−1
T∑

t=j+1

[Z1t(θ1)− Z1t(θ01 )]

× [Z2(t−j)(θ2)− Z2(t−j)(θ02 )]

= T−1
T∑

t=j+1

W1t(θ1)[Z2(t−j)(θ2)− Z2(t−j)]

+ T−1
T∑

t=j+1

{F1t [−V1t(θ1)] − F1t [−V1t(θ01 )]}

× [Z2(t−j)(θ2)− Z2(t−j)]

≡ M̂31(j, θ1, θ2)+ M̂32(j, θ1, θ2). (A.12)

For M̂31(j, θ1, θ2) in (A.12), following reasoning analogous to that
for M̂11(j, θ1) in the proof of Lemma A.1, we can obtain

sup
θ∈Θ0

T
T−1∑
j=1

k2(j/M)
∣∣∣M̂31(j, θ1, θ2)∣∣∣2→p 0. (A.13)

For M̂32(j, θ1, θ2) in (A.12), by the mean value theorem, we have

M̂32(j, θ1, θ2) = (θ1 − θ01 )
′T−1

T∑
t=j+1

∂F1t [−V1t(θ̄1)]
∂θ1

×[Z2(t−j)(θ2)− Z2(t−j)(θ02 )] = OP(T
−3/4) (A.14)

uniformly in (θ1, θ2) ∈ Θ0. Here, we have used the facts that
‖θ1 − θ

0
1 ‖ ≤ ∆0T

−
1
2 and

E sup
θ∈Θ0

∥∥∥∥∥T−1 T∑
t=j+1

∂F1t [−V1t(θ1)]
∂θ1

[Z2(t−j)(θ2)− Z2(t−j)(θ02 )]

∥∥∥∥∥
2

≤

{
T−1

T∑
t=1

E sup
θ1∈Θ

0
1

∥∥∥∥∂F1t [−V1t(θ1)]∂θ1

∥∥∥∥2
}

×

{
T−1

T∑
t=1

E sup
θ2∈Θ

2
0

[
Z2t(θ2)− Z2t(θ02 )

]2}
≤ CT−

1
2 ,
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given Assumption 2 and

E sup
θ2∈Θ

0
2

[
Z2t(θ2)− Z2t(θ02 )

]2
≤ E

{
1[−V2t(θ a2t) < Y2t < −V2t(θ

b
2t)]
}

= E{F2t [−V2t(θ b2t)] − F2t [−V2t(θ
a
2t)]} ≤ ∆0T

−
1
2

given‖θ a2t−θ
b
2t‖ ≤ ∆0T

−
1
2 ,where θ a2t ≡ arg infθ2∈Θ02 F2t [−V2t(θ2)]

and θ b2t ≡ arg supθ2∈Θ02 F2t [−V2t(θ2)], and the equality follows by

the law of iterated expectations and the fact that θ a2t and θ
b
2t are

measurable functions of I2t−1. It follows that

sup
θ∈Θ02

T
T−1∑
j=1

k2(j/M)
∣∣∣M̂32(j, θ1, θ2)∣∣∣2 = OP(M/T 12 ) = oP(1). (A.15)

Combining (A.12), (A.13) and (A.15) yields the desired result. �

Proof of Proposition A.2. Recalling the definition of Q̂2 in (A.1)
and using (A.2), we can write

Q̂2 = Q̂21(θ̂1)+ Q̂22(θ̂2)+ Q̂23(θ̂1, θ̂2), (A.16)

where

Q̂21(θ1) ≡
T−1∑
j=1

k2(j/M)M̂1(j, θ1)C̃(j),

Q̂22(θ2) ≡
T−1∑
j=1

k2(j/M)M̂2(j, θ2)C̃(j),

Q̂23(θ1, θ2) ≡
T−1∑
j=0

k2(j/M)M̂3(j, θ1, θ2)C̃(j).

Following reasoning analogous to that of Proposition A.1, it suffices
to show Lemmas A.4–A.6:

Lemma A.4. For any given constant ∆0 > 0, supθ1∈Θ01 |M
−
1
2 T Q̂21

(θ1)|→
p 0.

Proof of Lemma A.4. Recalling M̂1(j, θ1) = M̂11(j, θ1)+M̂12(j, θ1)
in (A.5), we have

Q̂21(θ̂1) =
T−1∑
j=1

k2(j/M)M̂11(j, θ̂1)C̃(j)

+

T−1∑
j=1

k2(j/M)M̂12(j, θ̂1)C̃(j)

≡ Q̂211(θ̂1)+ Q̂212(θ̂1). (A.17)

For the first term in (A.17), we have

sup
θ1∈Θ

0
1

M−
1
2 T
∣∣∣Q̂211(θ1)∣∣∣

≤

[
T
T−1∑
j=1

k2(j/M)M̂211(j, θ1)

] 1
2
[
M−1T

T−1∑
j=1

k2(j/M)C̃2(j)

] 1
2

= oP(1)OP(1) = oP(1) (A.18)

by the Cauchy–Schwarz inequality, (A.11), and the fact that

M−1T
T−1∑
j=1

k2(j/M)C̃2(j) = OP(1), (A.19)
which follows by Markov’s inequality, and E|C̃(j)|2 ≤ T−1 under
H01.
For the second term in (A.17), recalling that M̂12(j, θ1) can be

decomposed as in (A.6), we have

T Q̂212(θ1) = (θ1 − θ01 )
′T
T−1∑
j=1

k2(j/M)Γ (j)C̃(j)

+ (θ1 − θ
0
1 )
′T
T−1∑
j=1

k2(j/M)[Γ̃ (j)− Γ (j)]C̃(j)

+
1
2
(θ1 − θ

0
1 )
′T
T−1∑
j=1

k2(j/M)M̂122(j, θ̄1)C̃(j)

≡
√
T (θ1 − θ01 )

′D̂1(θ01 )+
√
T (θ1 − θ01 )

′D̂2(θ01 )

+
1
2

√
T (θ1 − θ01 )

′D̂3(θ̄1)
√
T (θ1 − θ01 ), (A.20)

where θ̄ lies between θ1 and θ01 . For the first term in (A.20), we have∥∥∥D̂1(θ01 )∥∥∥ ≤ √T T−1∑
j=1

k2(j/M) ‖Γ (j)‖
∣∣∣C̃(j)∣∣∣ = OP(1) (A.21)

by Markov’s inequality, Assumptions 5 and 6 and E|C̃(j)|2 ≤ T−1
under H01.
For the second term in (A.20), we have∥∥∥D̂2(θ01 )∥∥∥ ≤ √T T−1∑

j=1

k2(j/M)
∥∥Γ̃ (j)− Γ (j)∥∥ ∣∣∣C̃(j)∣∣∣

= OP(M/T
1
2 ) (A.22)

by Markov’s inequality, E‖Γ̃ (j) − Γ (j)‖2 ≤ ∆T−1 given
Assumption 5, and E|C̃(j)|2 ≤ T−1 under H01. Similarly, we have∥∥∥D̂3(θ̄1)∥∥∥ ≤ T−1 T∑

t=1

sup
θ1∈Θ

0
1

∥∥∥∥∂2F1t [−V1t(θ1)]∂θ1∂θ
′

1

∥∥∥∥ T−1∑
j=1

k2(j/M)
∣∣∣C̃(j)∣∣∣

= OP(M/T
1
2 ) (A.23)

given Assumption 6, and E|C̃(j)|2 ≤ T−1. Collecting (A.20)–(A.23)
and M/T → 0, we obtain M−

1
2 supθ1∈Θ01 |T Q̂212(θ1)|→

p 0. This
completes the proof for Lemma A.4. �

Lemma A.5. For any given constant ∆0 > 0, supθ2∈Θ02 |M
−
1
2 T Q̂22

(θ2)|→
p 0.

Proof of Lemma A.5. Similar to the proof of Lemma A.4. �

Lemma A.6. For any given constant ∆0 > 0, sup(θ1,θ2)∈Θ0 |M
−
1
2 T

Q̂23(θ1, θ2)|→p 0.

Proof of Lemma A.6. The result follows by the Cauchy–Schwarz
inequality, Lemma A.3 and (A.19). �

Proof of Theorem A.2. Thedesired result follows fromamodifica-
tion of the proof of Hong (2001, Theorem1) by putting ut ≡ Z1t−α
and vt ≡ Z2t − α. Note that {ut} is an i.i.d. sequence and ut is inde-
pendent of {vs, s < t} under H01. The difference between Theorem
1 of Hong (2001) and the present case is that in the former, {ut}
and {vt} are mutually independent, while in the present case, we
should allow for the possibility that vt may depend on {us, s < t}.
Given Assumption 3(ii), however, by going through all steps in the
proof of Hong (2001, Theorem 1), we can show that this does af-
fect the asymptotic normality result of the proposed test statistic.
In other words, the asymptotic normality of Q1(M) holds under if
{ut} and {vs}were mutually independent. �
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Proof of Theorem 2. Recall that C1T (M) = O(M) and D1T (M) =
2M

∫
k4(z)dz[1 + o(1)] as M → ∞ and M/T → 0, we have

(M1/2/T )Q1(M) = {2
∫
k4(z)dz}−1/2L2(f̂ , f̂ 01 )[1 + o(1)] + o(1).

Thus, it suffices to show Theorems A.3 and A.4.

Theorem A.3. L2(f̂ , f̂ 01 )− L
2(f̃ , f̃ 01 )→

p 0.

Theorem A.4. L2(f̃ , f̃ 01 )− L
2(f , f 01 )→

p 0.

Proof of Theorem A.3. Recall L2(f̂ , f̂ 01 ) = σ
−4Q̂1+2σ−4Q̂2, where

Q̂1 and Q̂2 are as in (A.1). It suffices to show Q̂1→p 0. The second
term Q̂2 will also vanish in probability by the Cauchy–Schwarz
inequality and TheoremA.4, which implies L2(f̃ , f̃ 01 ) = OP(1) given
Assumption 7.
Next, recall Q̂1 ≤ 3[Q̂11(θ̂1) + Q̂12(θ̂2) + Q̂13(θ̂1, θ̂2)], where

Q̂11(θ1), Q̂12(θ2) and Q̂13(θ1, θ2) are defined as in (A.3). We shall
show that these three terms all vanish in probability under HA1.
We first consider Q̂11(θ̂1). Given Assumption 4, we have that for

any given constant ε > 0, there exists ∆0 ≡ ∆0(ε) such that
P(|θ̂l − θ0l | > ∆0T−

1
2 ) < ε for all T sufficiently large. Thus, it

suffices to show Q̂11(θ1)→p 0 uniformly in θ1 ∈ Θ01 , where Θ
0
1 is

as in Lemma A.1. By the definition of Q̂11(θ̂1) in (A.3), we have

sup
θ1∈Θ

0
1

|Q̂11(θ1)| ≤ max
0<j<T

sup
θ1∈Θ

0
1

|M̂1(j, θ1)|
T−1∑
j=1

k2(j/M), (A.24)

where M̂1(j, θ1) is defined in (A.2). Put θ a1t ≡ arg infθ1∈Θ01 F1t [−V1t
(θ1)] and θ b1t ≡ arg supθ1∈Θ01 F1t [−V1t(θ1)]. Note that θ

a
1t and θ

b
1t are

measurable functions of I1(t−1), because V1t(θ1) depends on I1(t−1)
and θ1. Then

max
0<j<T

sup
θ1∈Θ

0
1

|M̂1(j, θ1)| ≤ T−1
T∑
t=1

sup
θ1∈Θ

0
1

|Z1t(θ1)− Z1t(θ01 )|

≤ T−1
T∑
t=1

[Z1t(θ b1t)− Z1t(θ
a
1t)] = OP(T

−
1
2 ), (A.25)

where the OP(T−
1
2 ) term follows fromMarkov’s inequality and the

fact that

E|Z1t(θ b1t)− Z1t(θ
a
1t)| = E{F1t [−V1t(θ

b
1t)] − F1t [−V

(1)
t (θ a1t)]}

≤ ∆0T−
1
2 E sup

θ1∈Θ
0
1

∥∥∥∥ ∂∂θ F1t [−V1t(θ1)]
∥∥∥∥

by the law of iterated expectations and ‖θ b1t − θ a1t‖ ≤

∆0T−
1
2 . It follows from (A.24) and (A.25), M2/T → 0

that supθ1∈Θ01 |Q̂11(θ1)| = OP(M/T
1
2 ) = oP(1). Similarly,

we have supθ2∈Θ02 |Q̂12(θ2)|→
p 0 and supθ∈Θ0 |Q̂13(θ)|→

p 0. This
completes the proof. �

Proof of Theorem A.4. See Hong (2001, proof of Theorem 2). �

Proof of Theorem 3. The proof is similar to that of Theorem 1, so
we omit it here. Part of the proof is more tedious than the proof
of Theorem 1 because both positive and negative j’s should be
considered, but the other part is simpler because under H02, ut ≡
Z1t − α is independent of {vs = Z2t − α, s ≤ t − 1} and vt is
independent of {us, s ≤ t − 1}. This is the reason why we do not
need Assumption 3, which is required in Theorem 1. �

Proof of Theorem 4. The proof is similar to that of Theorem2. �
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